
Generating unconstrained two-dimensional non-guillotine cutting

patterns by a recursive partitioning algorithm

Ernesto G. Birgin ∗ Rafael D. Lobato ∗ Reinaldo Morabito †

April 3, 2010

Abstract

In this study, a dynamic programming approach to deal with the unconstrained two-
dimensional non-guillotine cutting problem is presented. The method extends the recently
introduced recursive partitioning approach for the manufacturer’s pallet loading problem.
The approach involves two phases and uses bounds based on unconstrained two-staged and
non-staged guillotine cutting. Since a counterexample for which the approach fails to find
known optimal solutions was not found, it is conjectured that it always finds an optimal
unconstrained non-guillotine cutting. The method is able to find the optimal cutting pat-
tern of a large number of problem instances of moderate sizes known in the literature. For
the instances that the required computer runtimes is excessive, the approach is combined
with simple heuristics to reduce its running time. Detailed numerical experiments show the
reliability of the method.

Key words: Cutting and packing, two-dimensional non-guillotine cutting pattern, dynamic
programming, recursive approach, distributor’s pallet loading problem.

1 Introduction

Cutting and packing problems have been widely studied in the literature in the last decades.
They appear in different classes and practical applications, as discussed in several surveys [27,
26, 47, 64], annotated bibliographies [62, 28] and special issues [29, 48, 49, 16, 5, 65, 40, 55, 52]
(additional references can be found in the ESICUP web site [67]). In the present paper, we study
the generation of two-dimensional non-guillotine cutting (or packing) patterns, also referred
by some authors as two-dimensional knapsack problem or two-dimensional distributor’s pallet
loading. This problem is classified as 2/B/O/ according to Dyckhoff’s typology of cutting and
packing problems [27], and as two-dimensional rectangular Single Large Object Packing Problem
(SLOPP) based on Waescher et al.’s typology [64]. Besides the inherent complexity of this
problem (it is NP-hard [9]), we are also motivated by its practical relevance in different industrial
∗Department of Computer Science, Institute of Mathematics and Statistics, University of São Paulo, Rua do

Matão 1010, Cidade Universitária, 05508-090 São Paulo, SP - Brazil. e-mail: {egbirgin|lobato}@ime.usp.br
†Department of Production Engineering, Federal University of São Carlos, Via Washington Luiz km. 235,

13565-905, São Carlos, SP - Brazil. e-mail: morabito@ufscar.br

1

and logistics settings, such as in the cutting of steel and glass stock plates into required sizes,
the cutting of wood sheets and textile materials to make ordered pieces, the loading of different
items on the pallet surface or the loading of different pallets on the truck or container floor, the
cutting of cardboards into boxes, the placing of advertisements on the pages of newspapers and
magazines, the positioning of components on chips when designing integrated circuit, among
others.

Given a large rectangle of length L and width W (i.e. a stock plate), and a set of rectangular
pieces grouped into m different types of length li, width wi and value vi, i = 1, . . . ,m (i.e. the
ordered items), the problem is to find a cutting (packing) pattern which maximizes the sum of
the values of the pieces cut (packed). The cutting pattern is referred as two-dimensional since
it involves two relevant dimensions, the lengths and widths of the plate and pieces. A feasible
two-dimensional pattern for the problem is one in which the pieces placed into the plate do not
overlap each other, they have to be entirely inside the plate, and each piece must have one edge
parallel to one edge of the plate (i.e., an orthogonal pattern). In this paper we assume that
there are no imposed lower or upper bounds on the number of times that each type of piece can
be cut from the plate; therefore, the two-dimensional pattern is called unconstrained (i.e., 0 and⌊

L
li

⌋⌊
W
wi

⌋
turn out to be the obvious minimum and maximum number of pieces of type i in the

pattern); otherwise, it would be called constrained or doubly-constrained.
Without loss of generality, we also assume that the cuts are infinitely thin (otherwise we

consider that the saw thickness was added to L, W , li, wi), the orientation of the pieces is fixed
(i.e., a piece of size (li, wi) is different from a piece of size (wi, li) if li 6= wi) and that L, W ,
li, wi are positive integers. We note that if the 90o-rotation is allowed for cutting or packing
the piece type i of size (li, wi), this situation can be handled by simply considering a fictitious
piece type m + i of size (wi, li) in the list of ordered items, since the pattern is unconstrained.
Depending on the values vi, the pattern is called unweighted, if vi = γliwi for i = 1, . . . ,m and
γ > 0 (i.e., proportional to the area of the piece), or weighted, otherwise.

Moreover, we assume that the unconstrained two-dimensional cutting pattern is non-guillotine
as it is not limited by the guillotine type cuts imposed by some cutting machines (an orthogonal
guillotine cut on a rectangle is a cut from one edge of the rectangle to the opposite edge, parallel
to the remaining edge). Some industrial cutting processes also limit the way of producing a
guillotine cutting pattern. At a first stage the cuts are performed parallel to one side of the
plate and then, at the next stage, orthogonal to the preceding cuts, and so on. If there is an
imposed limit on the number of stages, say k, the guillotine pattern is called a k-staged pat-
tern; otherwise, it is non-staged (note that a non-staged pattern is equivalent to define k large
enough).

A large number of studies in the literature have considered staged and non-staged two-
dimensional guillotine cutting problems. Much less studies have considered two-dimensional
non-guillotine cutting problems (constrained and unconstrained), and only a few of them have
proposed exact methods to generate non-guillotine patterns. For example, [8] and [36] presented
0–1 linear programming formulations for the problem using 0–1 decision variables for the posi-
tions of the pieces cut from the plate; they developed Lagrangean relaxations and use them as
bounds in tree search procedures (subgradient optimization was used to optimize the bounds).
In [63] and [20], the problem is formulated as 0–1 linear models using left, right, top and bot-
tom decision variables for the relative positions of each pair of pieces cut from the plate (with

2

multiple choice disjunctive constraints); they suggested solving the models by branch-and-bound
algorithms exploring particular structures of these constraints. Other related 0–1 linear formula-
tions appear in [18, 30], and a 0–1 non-linear formulation was presented in [9] (see also [59, 56]).
Other exact and branch-and-bound approaches based on the so called two-level approach (the
first level selects the set of pieces to be cut without taking into account the layout, the second
checks if a feasible cutting layout exists for the pieces selected) are found in [19, 6, 32]. The
method presented in [32] is based on a two-level tree search that combines the use of a special
data structure for characterizing feasible cuttings with upper bounds.

Different heuristics based on random local search, bottom-left placement, network flow, graph
search, etc., and different metaheuristics based on genetic algorithms, tabu search, simulated
annealing, GRASP, etc., for generating constrained and unconstrained two-dimensional non-
guillotine cuttings are found in the literature. Some examples are in [15, 25, 4, 43, 45, 57, 9, 2,
3, 61, 35, 44, 21, 17, 30, 66]. Nonlinear-programming-based method for packing rectangles within
arbitrary convex regions, considering different types of positioning constraints, were presented
in [12, 13, 10, 50].

Most of these approaches were developed for the constrained problem, which can be more
interesting for certain practical applications with relatively low demands of the ordered items.
However, part of these methods may not perform well when solving the unconstrained problem,
especially those whose computational performance is highly dependent on the total number of
ordered items. On the other hand, the unconstrained problem is particularly interesting for
cutting stock applications with large-scale production and weakly heterogeneous items (i.e.,
relatively few piece types but many copies per type), in which the problem plays the role of a
column generation procedure, as pointed out by several authors since the pioneer study in [34].

In the present paper we extend a Recursive Partitioning Approach presented in [11] for the
manufacturer’s pallet loading to deal with the unconstrained two-dimensional orthogonal non-
guillotine cutting (unweighted and weighted, without and with piece rotation). This Recursive
Partitioning Approach combines refined versions of both the Recursive Five-block Heuristic pre-
sented in [53, 54] and the L-approach for cutting rectangles from larger rectangles and L-shaped
pieces presented in [46, 14]). This combined approach also uses bounds based on unconstrained
two-staged and non-staged guillotine cutting patterns. Since we were unable to find a counterex-
ample for which the approach fails, we conjecture that it always finds an optimal unconstrained
non-guillotine cutting, as well as the L-approach in [46, 14, 11] for the manufacturer’s pallet
loading. The approach was able to find an optimal solution of a large number of problem in-
stances of moderate sizes known in the literature. For the instances that the required computer
runtimes were excessive, we combined the approach with simple heuristics to reduce its running
time.

The paper is organized as follows. In Section 2 we briefly review a 0–1 linear programming
formulation of the problem and some lower and upper bounds known in the literature. In
Section 3 we present the two phases of the Recursive Partitioning Approach and some heuristics
that reduce the time and memory requirements of the procedure to deal with large problem
instances. Then in Section 4 we analyze the computational performance of the approach, with
and without the heuristics, in some numerical experiments. Finally, in Section 5 we present the
concluding remarks of this study.

3

2 Problem modeling and bounds

2.1 Problem modeling

The unconstrained two-dimensional non-guillotine cutting problem can be modeled as a 0–1
linear formulation proposed in [8]. Let (x, y) be the coordinates of the left-lower-corner of a
piece placed on the plate of size (L,W) (for simplicity we assume that the left-lower-corner of
the plate is (0, 0)). Without loss of generality, it can be shown that x and y belong, respectively,
to the sets of conic combinations of li and wi, i = 1, . . . ,m, for L and W , defined by:

SL = {x ∈ Z+ | x =
m∑

i=1

rili, 0 ≤ x ≤ L, ri ∈ Z+, i = 1, . . . ,m} and

SW = {y ∈ Z+ | y =
m∑

i=1

siwi, 0 ≤ y ≤W, si ∈ Z+, i = 1, . . . ,m}.

Note that as we decide to place a piece of type i in a position (x, y), we cannot place another
piece in a position (x′, y′) such that x ≤ x′ ≤ x + li − 1 and y ≤ y′ ≤ y + wi − 1, x, x′ ∈ SL,
y, y′ ∈ SW . In order to avoid piece overlapping, let gixyx′y′ be the mapping:

gixyx′y′ =
{

1, if x ≤ x′ ≤ x+ li − 1 and y ≤ y′ ≤ y + wi − 1,
0, otherwise,

which can be computed a priori for each i, (x, y) and (x′, y′). By defining the decision variables
aixy, i = 1, . . . ,m, x ∈ SL, y ∈ SW , as:

aixy =
{

1, if a piece of type i is placed in a position (x, y),
0, otherwise,

the model can be formulated as the following 0–1 integer program:

max
m∑

i=1

∑
x∈SL

∑
y∈SW

viaixy (1)

subject to
m∑

i=1

∑
x∈SL

∑
y∈SW

gixyx′y′aixy ≤ 1, x′ ∈ SL, y
′ ∈ SW , (2)

aixy ∈ {0, 1}, i = 1, . . . ,m, x ∈ SL, y ∈ SW . (3)

Note that model (1–3) has O(m|SL||SW |) 0–1 variables and |SL||SW | constraints1. It can be
shown that, without loss of generality, sets SL and SW can be replaced by the smaller sets RL

and RW known as reduced raster points [60] and defined as:

RL = {x ∈ Z+ | x = 〈L− x̂〉SL
for some x̂ ∈ SL},

RW = {y ∈ Z+ | y = 〈W − ŷ〉SW
for some ŷ ∈ SW },

(4)

1By defining Si
L = {x ∈ SL|0 ≤ x ≤ L− li} and Si

W = {y ∈ SW |0 ≤ y ≤W − wi}, it is possible to reduce the
number of binary variables of the model substituting SL and SW by Si

L and Si
W , respectively, in the summations

of (1) and (2) and in (3).

4

where
〈x̃〉SL

= max{x ∈ SL | x ≤ x̃} and 〈ỹ〉SW
= max{y ∈ SW | y ≤ ỹ}.

However, since both SL, SW and RL, RW can be large in practical cases, it may be hard to
solve the model above, as illustrated in Section 4. As mentioned before, other 0–1 linear models
for the non-guillotine cutting are found in the literature, but authors have pointed out that their
LP-relaxations provide bounds in general far from the optimal solution values [9, 30].

2.2 Lower and upper bounds

A simple lower bound on the value of an optimal cutting can be obtained from the best
homogeneous packing considering all types of pieces:

max
i∈{1,...,m}

{
vi

⌊
L

li

⌋⌊
W

wi

⌋}
. (5)

Similarly, a simple upper bound on the value of an optimal cutting is given by⌊
LW max

i∈F (L,W)

{
vi

liwi

}⌋
,

where F (L,W) = {i ∈ {1, . . . ,m} | li ≤ L and wi ≤W}.
Other lower and upper bounds are found in [8, 58, 33, 9, 3, 6]. However, most of these lower

and upper bounds were proposed for the constrained non-guillotine cutting, and they are less
effective for the unconstrained problem. In our implementation of the algorithm described in
Section 3, we have used the lower bound given by the best homogeneous packing (5) and the
upper bound introduced in [33]. According to [33], the upper bound for a rectangle with length
L and width W considering all types of pieces is given by

min{uh(L,W), uv(L,W)}, (6)

where

uh(L,W) =

⌊
W max

t∈Zm
+

{ ∑
i∈F (L,W)

vi

wi
ti

∣∣∣∣∣ ∑
i∈F (L,W)

liti ≤ L

}⌋
and

uv(L,W) =

⌊
Lmax

t∈Zm
+

{ ∑
i∈F (L,W)

vi

li
ti

∣∣∣∣∣ ∑
i∈F (L,W)

witi ≤W

}⌋
.

Upper bounds for all subproblems can be obtained by solving only two unconstrained knapsack
problems at the beginning of the algorithm. A dynamic programming procedure for solving
these problems is presented in details in [33].

5

3 Description of the algorithm

The Recursive Partitioning Algorithm presented here is an extension of the algorithm de-
scribed in [11] for the manufacturer’s pallet loading problem. It has basically two phases: in
phase 1 it applies a recursive five-block heuristic based on the procedure presented in [53] and
in phase 2 it uses an L-approach based on a dynamic programming recursive formula presented
in [46, 14]. Firstly, phase 1 is executed and, if a certificate of optimality is not provided by the
Recursive Five-block Heuristic, then phase 2 is executed. Additionally, information obtained
in phase 1 is used in phase 2 in at least two ways, according to [11]. If an optimal solution
was already found for a subproblem in phase 1, it is not solved again in phase 2, improving
the performance of phase 2. Moreover, having the information obtained in phase 1 at hand,
phase 2 is often able to obtain better lower bounds for its subproblems than the ones provided
by homogeneous cuttings (5), therefore improving the performance of phase 2. These two phases
are detailed in the sequel.

3.1 Phase 1

In phase 1, the Recursive Five-block Heuristic divides a rectangle into five (or less) smaller
rectangles in a way that is called first-order non-guillotine cut [4]. Figure 1 illustrates this kind of
cut represented by a quadruple (x1, x2, y1, y2), such that 0 ≤ x1 ≤ x2 ≤ L and 0 ≤ y1 ≤ y2 ≤W .
This cut determines five subrectangles (L1,W1), . . . , (L5,W5) such that L1 = x1, W1 = W − y1,
L2 = L − x1, W2 = W − y2, L3 = x2 − x1, W3 = y2 − y1, L4 = x2, W4 = y1, L5 = L − x2 and
W5 = y2. Each rectangle is recursively cut unless the (sub)problem related to this rectangle has
already been solved.

(0, 0)

y1

y2

x1 x2 (0, 0)

1
2

3

4
5

L4 L5

L2L1

W1

W4

W2

W5

(a) (b)

Figure 1: Representation of a first-order non-guillotine cut.

A pseudo-code of the Recursive Five-block Algorithm for the unconstrained non-guillotine
cutting problem is presented in Algorithms 12 and 2. The method is composed by two proce-

2It is worth mentioning that there is a minor typographical error in line 13 of Algorithm 2 in [11] (which

6

dures: Five-block-Algorithm and Solve. The second one is an auxiliary subroutine used
by the first. Input parameters of Five-block-Algorithm include the dimensions of the plate
and the pieces, and n and N correspond to the current depth and the maximum depth limit of
the search, respectively.

In Five-block-Algorithm, the lower bound starts with the value of the best homogeneous
solution (5), and it is updated as better solutions are found by the algorithm. The procedure
uses the upper bound (6). Both the initial lower and upper bounds are computed a priori. In
this way, an optimal solution can be detected in the procedure by closing the gap between these
bounds. Note that without loss of generality, the procedure only consider the sets of raster
points as defined in Section 2. Moreover, the same symmetry constraints for both guillotine and
first-order non-guillotine cuttings considered in [11] are used in the present algorithm to avoid
equivalent patterns.

In the Solve procedure, we note that if the depth limit N is sufficiently large, the Five-block
Algorithm is able to find the optimal first-order non-guillotine cutting pattern. Otherwise, by
choosing small values of N , it is possible to control the tradeoff between the computer runtime
and the quality of the solution found.

The same subproblem may appear in different levels of the tree search. In the case N is not
sufficiently large, a subproblem may be solved more than once (if its solution is not proven to be
optimal) in order to try to improve the previous solution found for it. In this case, if the depth
n at which a subproblem is faced is greater than or equal to the depth of its stored solution, the
subproblem is not solved again and the stored solution is used. Otherwise, if the current depth
is smaller, there are two possibilities. If the depth limit N was used to stop the recursion when
obtaining the stored subproblem solution, then it is worth trying to solve it again. On the other
hand, if the depth limit did not interfere in the subproblem resolution, the subproblem will not
be solved again, as a better solution cannot be found.

Using the same reasoning as in [11] for the manufacturer’s pallet loading, it can be shown
that the worst-case time complexity of the Five-block Heuristic for the unconstrained two-
dimensional non-guillotine cutting is O(|RL||RW |(|RL|2|RW |2 + |SL|+ |SW |) +L+W) and the
memory complexity is O(|RL||RW |+ L+W).

3.2 Phase 2

Phase 2 of the Recursive Partitioning Approach applies the L-approach [46, 14, 11] which
is based on the computation of a dynamic programming recursive formula [46]. This procedure
divides a rectangle or an L-shaped piece into two L-shaped pieces. An L-shaped piece is de-
termined by a quadruple (X,Y, x, y), with X ≥ x and Y ≥ y, and is defined as the topological
closure of the rectangle whose diagonal goes from (0, 0) to (X,Y) minus the rectangle whose di-
agonal goes from (x, y) to (X,Y). Figure 2 depicts the nine possible divisions [11] of a rectangle
or an L-shaped piece into two L-shaped pieces.

A pseudo-code of the L-Algorithm for the unconstrained non-guillotine cutting problem is
presented in Algorithms 3 and 4. In subroutine Solve-L (Algorithm 4), Li(L, k, ik) and Ik(L),
for i = 1, 2 and k = 1, . . . , 9, are defined as in [46, 11]. Similarly to Algorithm 1, input parameters

corresponds to Algorithm 1 here), although the computer implementation is correct – the correct constraint
should be y1 < y2 and y2 < W , instead of y1 < y2 and y1 + y2 ≤W .

7

Algorithm 1: Recursive Five-block Algorithm for the unconstrained non-guillotine cutting
problem.

Input: L,W, l1, w1, v1, . . . , lm, wm, vm, n,N ∈ Z.
Output: Value of the best cutting pattern found.
Five-block-Algorithm(L,W, l1, w1, v1, . . . , lm, wm, vm, n,N)
begin1

zlb ← lowerBound[IL, JW]2

zub ← upperBound[IL, JW]3

reachedLimit[IL, JW]← false4

if zlb = zub then5

return zlb6

Build set RL for L, (l1, . . . , lm), and set RW for W , (w1, . . . , wm)7

foreach x1 ∈ RL such that x1 ≤ bL
2 c do8

foreach x2 ∈ RL such that x1 < x2 and x1 + x2 ≤ L do9

foreach y1 ∈ RW such that y1 < W do10

foreach y2 ∈ RW such that y1 < y2 and y2 < W do11

if ¬(x1 + x2 = L and y1 + y2 > W) then12

Compute (L1,W1), . . . , (L5,W5)13

P ← {(L1,W1), . . . , (L5,W5)}14

zlb ← max{zlb,Solve(L,W, l1, w1, v1, . . . , lm, wm, vm, n,N, zlb,P)}15

if zlb = zub then16

return zlb17

foreach x1 ∈ RL such that x1 ≤ bL
2 c do18

x2 ← x1 y1 ← 0 y2 ← 019

Compute (L1,W1) and (L2,W2)20

P ← {(L1,W1), (L2,W2)}21

zlb ← max{zlb,Solve(L,W, l1, w1, v1, . . . , lm, wm, vm, n,N, zlb,P)}22

if zlb = zub then23

return zlb24

foreach y1 ∈ RW such that y1 ≤ bW
2 c do25

y2 ← y1 x1 ← 0 x2 ← 026

Compute (L2,W2) and (L5,W5)27

P ← {(L2,W2), (L5,W5)}28

zlb ← max{zlb,Solve(L,W, l1, w1, v1, . . . , lm, wm, vm, n,N, zlb,P)}29

if zlb = zub then30

return zlb31

return zlb32

end33

8

Algorithm 2: Subroutine Solve used by Five-block-Algorithm

Solve(L,W, l1, w1, v1, . . . , lm, wm, vm, n,N, zlb,P)
begin1

zub ← upperBound[IL, JW]2

for i← 1 to |P| do3

zi
lb ← lowerBound[ILi , JWi]4

zi
ub ← upperBound[ILi , JWi]5

Slb ←
∑|P|

i=1 z
i
lb6

Sub ←
∑|P|

i=1 z
i
ub7

if n < N then8

if zlb < Sub then9

for i← 1 to |P| do10

if depth[ILi
, JWi

] > n and reachedLimit[ILi
, JWi

] then11

zi ← Five-block-Algorithm(Li,Wi, l1, w1, v1, . . . , lm, wm, vm, n+ 1, N)12

lowerBound[ILi
, JWi

]← zi13

depth[ILi , JWi]← n14

if ¬reachedLimit[ILi , JWi] then15

upperBound[ILi
, JWi

]← zi16

else17

zi ← lowerBound[ILi , JWi]18

if reachedLimit[ILi , JWi] then19

reachedLimit[IL, JW]← true20

Slb ← Slb + zi − zi
lb21

Sub ← Sub + zi − zi
ub22

if zlb ≥ Sub then23

return zlb24

if Slb > zlb then25

zlb ← Slb26

if zlb = zub then27

reachedLimit[IL, JW]← false28

return zlb29

else30

reachedLimit[IL, JW]← true31

if Slb > zlb then32

zlb ← Slb33

if zlb = zub then34

reachedLimit[IL, JW]← false35

return zlb36

return zlb37

end38

9

(0, 0)

(x, y)

(x′, y′)

(X, Y)

L1

L2

(0, 0)

(x, y)

(x′, y′)

(X, Y)

L1

L2

(0, 0)

(x, y)

(x′, y′)

(X, Y)

L2

L1

B1 B2 B3

(0, 0)

(x, y)

(x′, y′)

(X, Y)

L2L1

(0, 0)

(x, y)

(x′, y′)

(X, Y)

L1

L2

(0, 0)

(x′, y′)

(x′′, y′)

(X, Y)

L1

L2

B4 B5 B6

(0, 0)

(x′, y′′)

(x′, y′)

(X, Y)

L1 L2

(0, 0)

(x, y)

(x′, y′)

(X, Y)

L1

L2

(0, 0)

(x, y)

(x′, y′)

(X, Y)

L1

L2

B7 B8 B9

Figure 2: Subdivisions of an L-shaped piece into two L-shaped pieces.

10

of L-Algorithm include the dimensions of the plate and the pieces, the current depth n and the
maximum depth limit N of the search. As Algorithm 1, the L-Algorithm takes into account
the storage of information of the subproblems previously solved during its execution. The same
data structure used in [11] to store this information is used in the implementation of the present
algorithm (a four dimensional array or a combination of an array and a balanced binary search
tree). See [11] for details.

Algorithm 3: L-Algorithm for the unconstrained non-guillotine cutting problem.
Input: L,W, l1, w1, v1, . . . , lm, wm, vm, n,N ∈ Z.
Output: Value of the best cutting pattern found.
L-Algorithm(L,W, l1, w1, v1, . . . , lm, wm, vm, n,N)
begin1

Build set SL for L, (l1, . . . , lm), and set SW for W , (w1, . . . , wm)2

return Solve-L((L,W,L,W), SL, SW , 0, N)3

end4

Algorithm 4: Subroutine Solve-L used by the L-Algorithm.
Input: An L-shaped piece L (X,Y, x, y), sets SL and SW , and a nonnegative integer N .
Output: Value of the best cutting pattern found.
Solve-L(L, SL, SW , n,N)
begin1

I ← Index(X,Y, x, y)2

if n = N or Solved(I) then3

return solution[I]4

zlb ← L-LowerBound(I)5

zub ← L-UpperBound(I)6

Build set RX for (X,SL), and set RY for (Y, SW)7

foreach k ∈ 1, . . . , 9 do8

foreach ik ∈ Ik(X,Y, x, y) do9

L1 ← L1(L, k, ik)10

L2 ← L2(L, k, ik)11

if L-UpperBound(L1) + L-UpperBound(L2) > zlb then12

z1 ← Solve-L(L1, SL, SW , n+ 1, N)13

z2 ← Solve-L(L2, SL, SW , n+ 1, N)14

if z1 + z2 > zlb then15

zlb ← z1 + z216

if zlb = zub then17

return zlb18

return zlb19

end20

In the L-Algorithm, the lower bound for a rectangle (X,Y) is given, initially, by the solution
found in phase 1 for the subproblem (X,Y). As the algorithm proceeds, the lower bound for the
subproblem (X,Y) may be improved and updated, so that the lower bound for (X,Y) in future
requests is no longer the solution found in the phase 1, but the best solution found so far for

11

the subproblem (X,Y). A lower bound for a non-degenerate L-shaped piece can be computed
by dividing it into two rectangles and summing up the lower bounds of these two rectangles.
The two straightforward different ways of dividing an L-shaped piece into two rectangles are
considered and the lower bound for the L-shaped piece is given by the best one out of these two
ones. As the algorithm proceeds, the lower bounds for L-shaped pieces are similarly updated as
those for rectangles.

The upper bound for a rectangle (X,Y) is the same one used in the previous phase, that is,
it is computed by (6). The upper bound for a non-degenerate L-shaped piece is given by the
area ratio. Among all pieces that fit into the L-shaped piece, the one with the greatest value
by area ratio is considered. The upper bound for the L-shaped piece is then given by its area
multiplied by the value per unit area of the most valuable piece, that is,⌊

[XY − (X − x)(Y − y)] max
i∈G(X,Y,x,y)

{
vi

liwi

}⌋
,

where G(X,Y, x, y) = {i|i ∈ F (X, y) or i ∈ F (x, Y)}.
Following the same steps in [11] for the manufacturer’s pallet loading, it can be shown that

the worst-case time complexity of the L-Algorithm for the unconstrained two-dimensional non-
guillotine cutting is

O(|RL|2|RW |2(|RL||RW |+ |SL|+ |SW |) + L+W) (7)

and the memory complexity is

O(|RL|2|RW |2 + L+W). (8)

It should be mentioned that the worst-case time and memory complexities of the Recursive
Partitioning Approach are given by (7) and (8), respectively.

3.3 Improving the lower bound and problem preprocessing

In order to improve the computational performance of the Recursive Partitioning Approach,
we start computing better lower bounds (feasible solutions) than the ones provided by the ho-
mogeneous solutions (5). The idea is to generate cutting patterns simpler than generic uncon-
strained non-guillotine cutting patterns, however, more elaborated than homogeneous patterns.

In this way, before performing phase 1 of Section 3.1, the approach computes optimal un-
constrained two-staged guillotine cutting patterns for the plate (L,W) and for a number of
subrectangles of (L,W). This computation uses the exact procedure in [34], based on a solution
of O(m) one-dimensional knapsack problems. Then, the approach computes optimal non-staged
guillotine cutting patterns for the plate (L,W) and a number of subrectangles of (L,W), using
the value of the two-staged solutions as initial lower bounds. This computation employs the
Recursive Five-block Algorithm specialized for the guillotine case (i.e., considering only verti-
cal and horizontal guillotine cuts). These optimal guillotine solutions are used to reduce the
tree search of the Recursive Five-block Heuristic in phase 1. Finally, the optimal first-order
non-guillotine solutions found in phase 1 for the plate (L,W) and a number of subrectangles of

12

(L,W) are used to reduce the dynamic programming recursions of the L-approach in phase 2
(Section 3.2). We note that each phase of the approach is executed only if the solution given by
the previous phase cannot be proven to be optimal. Solutions found for the subproblems in a
given phase are used as lower bounds for the same subproblems in the next phase. In this way,
solutions found in higher phases are at least as good as the ones found in earlier phases.

Therefore, besides providing as by-products (i) the optimal unconstrained two-staged guillo-
tine pattern, (ii) the optimal unconstrained non-staged guillotine pattern and (iii) the optimal
unconstrained first-order non-guillotine pattern, we conjecture that the Recursive Partitioning
Algorithm also provides the optimal unconstrained (general) non-guillotine pattern.

A final remark in this section is that as a preprocessing of the input of the Recursive Parti-
tioning Algorithm, our implementation of the algorithm may discard pieces that are not required
to be in an optimal solution. Note that any piece type i that satisfies li ≥ lj , wi ≥ wj , and
vi ≤ vj , for some piece type j 6= i, does not need to be considered, since j is at least as valuable
as i and it is not larger than i. If this is the case, we say that piece type j dominates piece
type i. It is worth mentioning that this procedure may be useful for weighted instances only.
This process could be generalized to the case where not only one, but a combination of pieces
dominates another piece. That is, when there is a subset of pieces P and a piece i /∈ P , such
that we can pack all pieces that belong to P (maybe using more than one of the same type) in
rectangle i, and the packing has value greater than or equal to vi. For unweighted instances,
if a piece i is dominated by pieces in set P , then there is a packing of the pieces in P in the
rectangle i so that rectangle i is completely covered (i.e, a zero waste packing). Hence, all in-
teger conic combinations produced by piece i are also produced by the ones in the set P and,
therefore, the exclusion of piece i does not contribute to a reduction on the number of patterns
that the algorithm must inspect. As the generalized process described above is a computational
expensive task, in the present work we implemented a preprocessing procedure that considers
the elimination of a piece dominated by another piece.

3.4 Heuristics for large problems

The generation of all patterns by the Recursive Partitioning Approach may be prohibitive
for large instances. Moreover, the amount of memory required by these algorithms may not
be available. For this reason, we propose heuristics that reduce both the time and memory
requirements of the algorithms. These procedures, however, may lead to a loss of quality of
the solution found. Since the time and memory complexities of generating all possible cuttings
highly depends on the sizes of the integer conic combinations and raster points sets (as pointed
out in (7) and (8), respectively), we can significantly reduce time and memory requirements in
two ways: (i) by limiting the search depth of the recursions (i.e., setting parameter N 6= ∞ in
Algorithms 1–4); and (ii) by replacing the integer conic combinations and raster points sets by
smaller sets.

In order to reduce the sets of conic combinations SL and SW , it was suggested in [8] a simple
iterative procedure that starts eliminating the piece with the smallest length (width) until the
desired sizes of the sets are achieved. In this work we decided by an alternative procedure that
replaces the sets SL and SW by the shrunk sets S̃L and S̃W , so that the product |S̃L||S̃W | is
limited by a given threshold parameter M . Moreover, to substitute the raster points sets, the

13

shrunk sets R̃L and R̃W are obtained by using definition (4) with S̃L and S̃W instead of SL and
SW .

Algorithms 5–7 describe the implemented reduction strategy. Basically, the strategy consists
in selecting equally distributed elements within ordered versions of sets SL and SW . Algorithm 7
describes the main routine named ReduceSets that uses Algorithms 5 and 6 as subroutines.
Specifically, the heuristic version of the Recursive Partitioning Algorithm makes use of routine
ReduceSets in line 7 of Algorithm 1 to compute R̃L and R̃W based on S̃L and S̃W . Similarly,
Algorithm 3 uses routine ReduceSets in line 2 to build sets S̃L and S̃W and call subroutine
Solve-L (Algorithm 4) in line 3 with them, instead of SL and SW .

Algorithm 5: Select n numbers between s and e.
Input: The number n of elements to be selected, the first element s to be considered and the last element

e to be considered. We suppose that s ≤ e and n ≤ e− s + 1.
Output: A subset of {s, . . . , e} with n elements.
Select(n, s, e)
begin1

I ← ∅2

if n > 0 then3

I ← b s+e
2
c4

if n > 1 then5

I ← I ∪ Select(bn−1
2
c, s, b s+e

2
c − 1)6

I ← I ∪ Select(dn−1
2
e, b s+e

2
c+ 1, e)7

return I8

end9

Algorithm 6: Select n elements of S equally distributed. We suppose that n ≤ |S|. Si

denotes the i-th smallest element of S.
Input: S and the number n of elements in the reduced set.
Output: A subset of S with size n.
ReduceSet(S, n)
begin1

S̃ ← ∅2

I ← Select(n, 1, |S|)3

foreach i ∈ I do4

S̃ ← S̃ ∪ {Si}5

return S̃6

end7

4 Numerical experiments

We implemented the Recursive Partitioning Approach and its heuristic counterpart for the
unconstrained two-dimensional non-guillotine cutting problem as described in Algorithms 1–7.
The algorithms were coded in C/C++ language. The experiments were performed in a 2.4GHz
Intel Core2 Quad Q6600 with 8.0GB of RAM memory and Linux Operating System. Compiler
option -O3 has been adopted. The computer implementation of the algorithms as well as the

14

Algorithm 7: Given sets S and T , and a positive integer n, it creates sets S̃ ⊆ S and
T̃ ⊆ T such that |S̃||T̃ | ≈M if M < |S||T |. Otherwise, it returns S and T .

Input: Sets S and T and an integer M .
Output: Sets S̃ ⊆ S and T̃ ⊆ T such that |S̃||T̃ | ≈M .
ReduceSets(S, T, M)
begin1

p← |S||T |2

if p ≤M then3

return S and T4

s←
lq

M
p
|S|

m
5

t←
lq

M
p
|T |

m
6

S̃ ← ReduceSet(S, s)7

T̃ ← ReduceSet(T, t)8

S̃ ← S̃ ∪ {S1, S|S|}9

T̃ ← T̃ ∪ {T1, T|T |}10

return S̃ and T̃11

end12

data sets used in our experiments and the solutions found are publicly available for benchmarking
purposes at [68].

In the numerical experiments, we considered 95 problem instances found in the literature: H,
HZ1 and HZ2 from [37], [41] and [42], respectively; GCUT1–GCUT13 and GCUT14–GCUT17
from [7] and [22], respectively; M1–M5 and MW1–MW4 from [51] and [39], respectively; U1–U3
and W1–W3 from [38]; U4, W4, LU1–LU4, LW1–LW4 from [39]; UU1–UU11 and UW1–UW11
from [31]; APT10–APT29 from [1]; and B1–B7 from [23]. Table 1 presents some characteristics
of these instances. In the table, m2 is the original number of piece types while m1 is the
reduced number of piece types obtained by applying the preprocessing procedure described in
Subsection 3.3, L and W are the length and width of the stock plate, and |SL|, |SW |, |RL| and
|RW | are the number of elements of the sets of conic combinations and raster points, respectively,
after applying the preprocessing procedure for the elimination of dominated pieces described in
Subsection 3.3. It should be noted in Table 1 that the number of piece types of the instances
varies from 5 to 200 and the number of conic combinations (or raster points) from a few tens to
thousands. Therefore, the number of variables and constraints of model (1–3) for these instances
varies from a few hundreds to billions.

We arbitrarily divided the experiments with these instances into two parts: the first consists
of experiments with instances of moderate size, defined as max{|SL|, |SW |} < 1, 000, and the
second part contains experiments with the remaining large-sized instances.

4.1 Instances of moderate size

In this set of experiments, we imposed no limit to the search depth, i.e., we set N = ∞.
Table 2 presents the values of the unconstrained two-stage, guillotine, first-order non-guillotine
(Five-block Algorithm) and (superior-order) non-guillotine (L-algorithm) cutting patterns ob-
tained by the Recursive Partitioning Approach for the instances of moderate size. The two-

15

Instance
m

L W |SL| |SW | |RL| |RW | |SL||SW |m1 m2

H 5 5 127 98 35 61 25 30 2135
HZ1 6 6 78 67 70 44 61 23 3080
HZ2 5 5 99 80 25 56 17 31 1400
GCUT1 10 10 250 250 68 20 13 5 1360
GCUT2 20 20 250 250 95 112 17 24 10640
GCUT3 30 30 250 250 143 107 44 26 15301
GCUT4 50 50 250 250 146 146 45 50 21316
GCUT5 10 10 500 500 40 76 10 13 3040
GCUT6 20 20 500 500 96 120 12 18 11520
GCUT7 30 30 500 500 179 126 23 19 22554
GCUT8 50 50 500 500 225 262 44 59 58950
GCUT9 10 10 1000 1000 92 42 15 7 3864
GCUT10 20 20 1000 1000 89 155 14 20 13795
GCUT11 30 30 1000 1000 238 326 20 38 77588
GCUT12 50 50 1000 1000 398 363 49 42 144474
GCUT13 32 32 3000 3000 1821 2425 647 1849 4415925
GCUT14 42 42 3500 3500 2681 2976 1861 2451 7978656
GCUT15 52 52 3500 3500 2690 3048 1879 2595 8199120
GCUT16 62 62 3500 3500 2824 3058 2147 2615 8635792
GCUT17 82 82 3500 3500 2929 3068 2357 2635 8986172
M1 10 10 100 156 48 74 23 17 3552
M2 10 10 253 294 154 87 63 17 13398
M3 10 10 318 473 72 156 13 32 11232
M4 10 10 501 556 78 116 15 15 9048
M5 10 10 750 806 124 147 23 16 18228
MW1 10 10 100 156 48 74 23 17 3552
MW2 9 10 253 294 145 87 53 17 12615
MW3 8 10 318 473 60 130 13 28 7800
MW4 9 10 501 556 106 112 22 15 11872
MW5 8 10 750 806 99 100 22 12 9900
U1 10 10 4500 5000 2910 1984 1327 253 5773440
U2 10 10 5050 4070 2225 373 351 38 829925
U3 20 20 7350 6579 3948 3711 832 979 14651028
U4 40 40 7350 6579 6151 4898 4951 3216 30127598
W1 6 20 5000 5000 1288 1228 190 179 1581664
W2 9 20 3427 2769 407 382 60 58 155474
W3 7 40 7500 7381 1029 1477 129 180 1519833
W4 12 80 7500 7381 5412 5494 3323 3606 29733528
UU1 25 25 500 500 171 205 29 39 35055
UU2 30 30 750 800 334 322 61 38 107548
UU3 25 25 1100 1000 389 317 44 37 123313
UU4 38 38 1000 1200 444 570 65 83 253080
UU5 50 50 1450 1300 694 643 111 116 446242
UU6 38 38 2050 1457 649 495 59 50 321255
UU7 50 50 1465 2024 743 944 144 139 701392
UU8 55 55 2000 2000 914 830 114 95 758620
UU9 60 60 2500 2460 1047 1044 120 127 1093068
UU10 55 55 3500 3450 1304 1542 110 177 2010768
UU11 25 25 3500 3765 3014 2461 2527 1156 7417454

Table 1: Characteristics of the instances.

16

Instance
m

L W |SL| |SW | |RL| |RW | |SL||SW |m1 m2

UW1 7 25 500 500 72 70 10 18 5040
UW2 8 35 560 750 172 80 31 16 13760
UW3 9 35 700 650 96 98 18 21 9408
UW4 10 45 1245 1015 193 251 23 33 48443
UW5 6 35 1100 1450 76 68 19 9 5168
UW6 15 47 1750 1542 310 379 37 38 117490
UW7 11 50 2250 1875 185 354 27 33 65490
UW8 13 55 2645 2763 450 540 49 39 243000
UW9 14 45 3000 3250 357 384 38 39 137088
UW10 17 60 3500 3650 690 797 61 53 549930
UW11 8 25 555 632 259 327 64 104 84693
LU1 97 100 20789 23681 10075 22602 9753 21522 227715150
LU2 98 100 25587 34563 24478 33421 23368 32278 818079238
LU3 149 150 37587 27563 37022 13684 36456 13584 506609048
LU4 200 200 45237 35983 22546 17894 22471 17794 403438124
LW1 56 100 20789 23681 10057 11516 9717 11189 115816412
LW2 48 100 25587 34563 12447 33403 12098 32242 415767141
LW3 83 150 37587 27563 18627 13677 18458 13570 254761479
LW4 112 200 45237 35983 22546 17883 22471 17772 403190118
ATP10 51 51 2097 1713 1760 1478 1422 1242 2601280
ATP11 58 58 2600 1612 2156 1435 1711 1257 3093860
ATP12 35 35 2662 1941 1966 1420 1269 898 2791720
ATP13 54 54 1674 2090 1422 1802 1169 1513 2562444
ATP14 42 42 2090 2138 1739 1681 1387 1223 2923259
ATP15 49 49 2222 2726 1741 2264 1259 1801 3941624
ATP16 53 53 2899 2614 2292 2104 1684 1593 4822368
ATP17 59 59 2313 1962 1980 1643 1646 1323 3253140
ATP18 31 31 2775 2105 2163 1524 1550 942 3296412
ATP19 35 35 2284 2994 1729 2325 1173 1655 4019925
ATP20 34 45 2840 2858 2284 2260 1727 1661 5161840
ATP21 34 48 2866 1784 2066 1417 1265 1049 2927522
ATP22 37 52 2711 2110 2168 1708 1624 1305 3702944
ATP23 35 53 1856 2636 1401 2048 945 1459 2869248
ATP24 33 44 2070 2729 1632 2308 1193 1886 3766656
ATP25 24 36 2885 1715 2246 1307 1606 898 2935522
ATP26 34 48 2359 1656 1842 1340 1324 1023 2468280
ATP27 33 48 1793 1875 1429 1397 1064 918 1996313
ATP28 36 54 2020 2796 1604 2383 1187 1969 3822332
ATP29 41 59 1839 2829 1505 2261 1170 1692 3402805
B1 30 30 4000 2000 3452 1343 2903 685 4636036
B2 30 30 4000 2000 3325 1429 2649 857 4751425
B3 30 30 4000 2000 3370 1411 2739 821 4755070
B4 30 30 4000 2000 3388 1426 2775 851 4831288
B5 30 30 4000 2000 3324 1393 2647 785 4630332
B6 30 30 4000 2000 3299 1441 2597 881 4753859
B7 180 180 4000 2000 3654 1664 3307 1327 6080256

Table 1: Characteristics of the instances (cont.).

17

Instance
Two-stage cuts Guillotine cuts Five-block Algorithm L-Algorithm Total

Solution Time (sec) Solution Time (sec) Solution Time (sec) Solution Time (sec) time

H 12132 0.62 12348 0.00 – – – – 1.67
HZ1 5226 0.67 – – – – – – 1.30
HZ2 8046 0.57 8226 0.00 8443 0.01 8443 2.18 4.23
GCUT1 56460 0.57 56460 0.00 58480 0.00 58480 0.72 2.84
GCUT2 60076 0.69 60536 0.00 61146 0.00 61146 0.96 3.03
GCUT3 60133 0.58 61036 0.00 61275 0.02 61275 4.21 6.41
GCUT4 61698 0.70 61698 0.00 61918 0.06 61918 20.22 22.35
GCUT5 246000 0.54 246000 0.00 246000 0.00 246000 0.67 2.74
GCUT6 238998 0.71 238998 0.00 243598 0.00 243598 0.74 2.82
GCUT7 242567 0.56 242567 0.00 244306 0.00 244306 0.92 2.98
GCUT8 245758 0.73 246633 0.00 247815 0.10 247815 32.57 34.82
GCUT9 971100 0.54 971100 0.00 971100 0.00 971100 0.68 2.79
GCUT10 982025 0.71 982025 0.00 982025 0.00 982025 0.76 2.83
GCUT11 980096 0.56 980096 0.16 980096 0.00 980096 1.92 4.05
GCUT12 978776 0.53 979986 0.16 979986 0.06 979986 16.95 19.06
M1 15024 0.55 15024 0.00 15054 0.00 15073 1.13 3.20
M2 72172 0.66 73176 0.00 73255 0.04 73255 7.90 10.02
M3 141810 0.57 142817 0.00 147386 0.00 147386 1.10 3.16
M4 265768 0.47 265768 0.00 266233 0.00 266233 0.76 2.80
M5 577882 0.71 577882 0.00 579883 0.00 579883 1.08 3.14
MW1 3882 0.50 3882 0.00 3882 0.00 3882 1.22 3.23
MW2 24950 0.67 24950 0.00 24950 0.01 24950 6.17 8.24
MW3 37068 0.49 37068 0.00 37068 0.00 37068 1.01 3.04
MW4 59364 0.50 59576 0.00 59576 0.00 59576 1.07 3.05
MW5 189924 0.54 189924 0.00 189924 0.00 189924 0.94 2.98
W2 34520 0.70 35159 0.00 35822 0.96 35822 229.76 232.81
UU1 240346 0.58 242919 0.00 245205 0.02 245205 5.48 7.62
UU2 595288 0.70 595288 0.00 595288 0.08 595288 34.24 36.39
UU3 1065051 0.50 1072764 0.16 1088154 0.04 1088154 16.51 18.61
UU4 1177371 0.52 1179050 0.17 1191071 0.82 1191071 330.16 333.02
UU5 1868985 0.49 1868999 0.18 1870038 4.52 1870038 3057.23 3063.82
UU6 2950760 0.52 2950760 0.16 2950760 0.16 2950760 61.50 63.80
UU7 2925362 0.54 2930654 0.22 2943852 10.76 2943852 7620.64 7633.53
UU8 3959352 0.55 3959352 0.19 3969784 3.30 3970877 1822.15 1827.64
UW1 6036 0.58 6036 0.00 6036 0.00 6036 0.72 2.83
UW2 8468 0.66 8468 0.00 8720 0.00 8720 1.45 3.48
UW3 5888 0.50 6302 0.00 6652 0.00 6652 1.20 3.18
UW4 7748 0.52 8326 0.16 8326 0.01 8326 3.24 5.31
UW5 7780 0.64 7780 0.00 7780 0.00 7780 0.74 2.76
UW6 6548 0.67 6615 0.00 6803 0.03 6803 14.68 16.77
UW7 10464 0.65 10464 0.00 10464 0.01 10464 4.42 6.47
UW8 7692 0.66 7692 0.00 7692 0.05 7692 26.79 28.92
UW9 7038 0.72 7038 0.00 7128 0.02 7128 13.87 16.02
UW10 7461 0.67 7507 0.00 7507 0.12 7507 99.79 101.96
UW11 15747 0.70 15747 0.01 16400 1.56 16400 1015.00 1018.74

Table 2: Results obtained by the Recursive Partitioning Algorithm for instances of moderate
size.

stage and guillotine solutions are computed before phase 1 to obtain non-trivial lower bounds
as described in Section 3.3. The Five-block Algorithm solution and the L-Algorithm solution
correspond to phases 1 and 2 of the Recursive Partitioning Approach, respectively. The symbol
“–” in the table means that an optimality certificate was found by closing the gap between the
upper and the lower bound of the problem and, in consequence, the execution of the method
was terminated. Columns with times represent the CPU time of each phase of the method.
The time in the last column is the sum of the times of each phase plus the time used to read
and preprocess the input data, compute lower and upper bounds for each possible subrectangle,
draw and save the solution.

In the table, the numbers in bold indicate that the corresponding phase of the method
improved the solution given by the previous phase. For example, note that for instances M1
and UU8, the optimal guillotine pattern value coincides with the optimal two-stage pattern
value, while the optimal five-block pattern is better and the L-Algorithm pattern is even better.
Figures 3 and 4 depict the corresponding optimal cutting patterns for instances M1 and UU8,

18

49× 4549× 45

49× 4549× 45

47× 6647× 66

31× 51

31× 51

31× 51

21× 87

47× 66

27× 32

27× 32
21× 87 21× 87

16× 50

21× 87

21× 87 21× 87

27× 32

27× 32

47× 66

16× 50

31× 51

31× 51

(a) (b) (c)

Figure 3: Graphical representations of solutions found by the Recursive Partitioning Algorithm
for instance M1. (a) Optimal guillotine pattern with value 15,024. (b) First-order guillotine
pattern with value 15,054. (c) L-Algorithm pattern with value 15,073.

respectively.
As expected, the optimal unconstrained two-stage and guillotine pattern values coincide

with the ones reported in the literature [37, 7, 51, 41, 42, 38, 31, 39, 1, 24, 22]. Moreover, the
unconstrained non-guillotine solutions found by the Five-block Algorithm and the L-Algorithm
improve the guillotine ones in many instances. To the best of our knowledge, there are no
studies in the literature reporting unconstrained non-guillotine solutions for these instances. An
interesting result in Table 2 is that most of the best solutions of the Recursive Partitioning
Approach were found by the Five-block Algorithm, requiring affordable runtimes (only a few
seconds).

We conjecture that all unconstrained non-guillotine cutting patterns obtained by the Re-
cursive Partitioning Approach for these moderate-sized instances are optimal. For instances H
and HZ1, the Recursive Partitioning Approach gives an optimality certificate. For instances
HZ2, GCUT1–GCUT3, GCUT5–GCUT7, GCUT9, GCUT10, M1–M5 and MW1–MW5, an op-
timality certificate was obtained solving the LP-relaxation of model (1–3) using the modelling
language GAMS 19.8 with the solver CPLEX 7. For all the remaining moderate-sized instances,
we were unable to prove the optimality because the CPLEX execution was aborted with a
computer memory overflow error.

To empirically reinforce our conjecture about the exactness of the Recursive Partitioning
Approach, we also performed additional experiments with other 22 problem instances of the
literature [43, 45], for which the optimal solutions are known by construction. These unweigthed
instances were generated in such a way that there exists at least one optimal cutting pattern
with zero waste, that is, the value of this cutting pattern coincides with the area of the stock
plate. For all instances C1P1–C4P3 in [43] and LCT1–LCT10 in [45], the Recursive Partitioning
Approach was able to find an optimal solution. In all cases the optimal pattern is two-stage

19

770× 877 1228× 883

529× 555 729× 553 729× 553

529× 555 729× 553 729× 553

607× 753

607× 753

453× 492

453× 492

453× 492

936× 893

460× 592 460× 592

453× 492 453× 492 1091× 514

453× 492 1091× 514453× 492

563× 862

729× 553

720× 466

720× 466
596× 650

704× 836

683× 628

(a) (b) (c)

Figure 4: Graphical representations of solutions found by the Recursive Partitioning Algorithm
for instance UU8. (a) Optimal guillotine pattern with value 3,959,352. (b) First-order guillotine
pattern with value 3,969,784. (c) L-Algorithm pattern with value 3,970,877.

guillotine, with the exception of instance LCT3 for which the optimal pattern was obtained by
the Five-block Algorithm.

4.2 Large instances

In a first set of experiments with the large instances, we applied an heuristic version of
the Recursive Partitioning Approach, without imposing limits to the search depth (i.e., setting
N = ∞). Sets SL and SW were replaced in the guillotine, the five-block and the L-Algorithm
phases by sets S̃L and S̃W generated by Algorithm 7 with the product threshold parameter
M = 40, 000, 000, M = 150, 000 and M = 10, 000, respectively. Therefore, the best guillotine,
five-block and non-guillotine solutions obtained by these algorithms may not be optimal.

Table 3 presents the values of the unconstrained two-stage, guillotine, first-order non-guillotine
(Five-block Algorithm) and superior-order non-guillotine (L-algorithm) cutting patterns ob-
tained by the heuristic version of the Recursive Partitioning Approach for the large-sized in-
stances. We first note that the two-staged phase of this heuristic version is identical to the one
of the exact version of the method, i.e., all two-staged solutions are optimal. Moreover, looking
at the quantity |SL| × |SW | of each instance on Table 1, and considering that guillotine cuts
of instances with |SL| × |SW | ≤ 40, 000, 000 are being solved to optimality, we know that, with
the exception of instances LU1–LU4 and LW1–LW4, the guillotine cuts of all the large-sized
instances are optimal too. Among the optimal guillotine cuts generated by our method, we
were able to verify that, for instances GCUT13–GCUT17, U1–U3, W1, W3, UU9–UU11, and
APT10–APT29, solutions found by our method are in agreement with previously published so-
lutions [38, 31, 39, 1, 23, 24, 22]. For the remaining instances there are no optimal guillotine
solutions reported in the literature. Even without this double checking, guillotine solutions for
instances U4, W4 and B1–B7 are optimal, but whether or not guillotine solutions for instances
LU1–LU4 and LW1–LW4 are optimal remains to be verified. A remark for instances U2 and U3
is in order. Instances U2 and U3 were introduced in [38]. [24] reports their optimal guillotine
pattern values as being 20,232,224 and 48,142,840, respectively, mentioning that these optimal

20

values can be obtained by running the algorithm for staged patterns presented in [23] (setting the
maximum allowed number of stages to infinity). These values are slightly larger than the ones
reported in Table 3, that should be optimal. We implemented and run the method introduced
in [23], and the same values reported in Table 3 were found, which suggests that the optimal
values for instances U2 and U3 reported in [24] may be incorrect. To reinforce this idea, we note
that, as far as we know, there is no publication introducing a method (exact or heuristic) that
finds better quality solutions than the ones being reported here, while some publications report
equal or lower quality solutions [38, 1, 24].

Regarding Table 3, it is worth remarking that instances LU1–LU4, LW1–LW4 are huge
instances and involve tens of thousands of conic combinations. Note that the guillotine solution
found for instance B7 is proven to be optimal. Note also that most of the best solutions were
obtained by applying only guillotine cuts, but the demanded runtimes are generally much higher
than the ones in the moderate-sized instances of Table 2. Exceptions are instances GCUT13,
W3, W4, UU9 and LU4 for which none of the possible guillotine partitions (neither horizontal
nor vertical) provides a lower bound greater than the value of the optimal two-stage pattern.
Other exceptions are instances APT21 and APT22 for which the Five-block Algorithm was able
to improve the lower bound given by the guillotine partitions. On the other hand, note that
the optimal two-stage solutions in the table are reasonably good, if compared to the guillotine
solutions, and they are obtained in just a couple of seconds.

In a second set of experiments, we applied another heuristic version of the Recursive Parti-
tioning Approach, using the complete conic combinations sets in all the phases of the method,
fixing the search depth limit parameter N = ∞ in the guillotine phase and N = 1 in the five-
block phase, and skipping the L-Algorithm phase of the method. Table 4 presents the values
of the unconstrained two-stage, guillotine and first-order non-guillotine (Five-block Algorithm)
cuts obtained by this heuristic version of the Recursive Partitioning Approach for some of the
large-sized instances. The unconstrained two-stage and guillotine pattern values coincide with
the ones of Table 3. Note, however, that the Five-block Algorithm was able to find improved
non-guillotine solutions for most of these examples (if compared to Table 3), at the expenses
of much higher running times. In particular, since the upper bound on the optimal value for
instance GCUT14–GCUT17 provided by the algorithm is 12,250,000, we note that the five-block
solution found for instance GCUT17 is proven to be optimal. Besides that, note that, for in-
stance APT22, the heuristic version of the Five-block Algorithm with N = 1 and using the
complete set of conic combinations found a better solution than the previous heuristic version
with N =∞ and a shrunk set of conic combinations (see Table 3).

In addition to the experiments described above, we arbitrarily decided to solve the two large
instances UU9 and UU10 with the non-heuristic version of the Recursive Partitioning Approach.
While for instance UU9 the best solution obtained corresponds to a two-stage pattern with value
6,100,692, for instance UU10, each phase of the method improved the solution found by the
previous phase. Figure 5 illustrates the corresponding cutting patterns obtained by each phase
for instance UU10. The total runtimes for solving instances UU9 and UU10 were 4,321.59 and
8,908.24 seconds, respectively.

21

Instance
Two-stage cuts Guillotine cuts Five-block Algorithm L-Algorithm Total

Solution Time (sec) Solution Time (sec) Solution Time (sec) Solution Time (sec) time

GCUT13 8997780 0.70 8997780 21.24 8997780 10.40 8997780 0.72 36.72
GCUT14 12236280 0.68 12245410 206.46 12245410 37.47 12245410 46.84 298.22
GCUT15 12239904 0.58 12246032 225.11 12246032 29.00 12246032 876.49 1139.46
GCUT16 12243100 0.57 12248836 326.06 12248836 72.24 12248836 1492.92 1901.73
GCUT17 12242998 0.73 12248892 430.19 12248892 28.10 12248892 1763.37 2235.80
U1 22167051 0.55 22370130 6.27 22370130 3.90 22370130 1.83 15.16
U2 20031845 0.55 20232223 0.23 20232223 0.14 20232223 0.91 3.42
U3 47912942 0.84 48142836 14.24 48142836 0.89 48142836 1.06 23.75
U4 48227224 0.76 48304289 2169.51 48304289 289.91 48304289 435.73 2917.68
W1 161424 0.65 162867 0.16 162867 0.24 162867 0.88 3.53
W3 234108 0.70 234108 0.03 234108 0.17 234108 0.82 3.31
W4 377910 0.73 377910 27.14 377910 65.67 377910 158.99 261.15
UU9 6100692 0.62 6100692 0.19 6100692 0.03 6100692 0.88 3.97
UU10 11929561 0.69 11955852 0.08 11955852 0.04 11955852 0.70 4.37
UU11 13066737 0.71 13157811 217.67 13157811 988.84 13157811 244.20 1455.46
LU1 492259840 1.52 492278922 6792.50 492278922 154.47 492278922 1.14 7001.03
LU2 884318400 1.54 884341464 9620.75 884341464 88.56 884341464 0.89 9763.91
LU3 1035962256 2.27 1035971468 15245.45 1035971468 116.47 1035971468 0.92 15444.27
LU4 1627681752 2.35 1627681752 0.10 1627681752 154.87 1627681752 0.90 261.50
LW1 170590913 0.94 171245481 10313.17 171245481 145.54 171245481 15008.65 25499.52
LW2 324615667 0.99 325011119 9446.71 325011119 19766.82 325011119 20104.52 49346.43
LW3 430291142 1.15 430706636 16192.94 430706636 94.64 430706636 19676.79 36013.23
LW4 565839770 1.49 566102201 11459.56 566102201 93.23 566102201 22218.03 33833.78
APT10 3585612 0.56 3589703 56.52 3589703 190.66 3589703 1727.17 1978.77
APT11 4175414 0.54 4188915 81.59 4188915 50.09 4188915 2748.75 2885.51
APT12 5148302 0.54 5156065 21.16 5156065 270.93 5156065 174.00 469.79
APT13 3493072 0.73 3498302 56.41 3498302 60.40 3498302 0.87 122.27
APT14 4458052 0.55 4463550 51.57 4463550 89.45 4463550 1082.57 1227.69
APT15 6028426 0.72 6047188 70.68 6047188 81.15 6047188 669.11 826.36
APT16 7533987 0.70 7566719 98.33 7566719 62.66 7566719 893.13 1060.57
APT17 4529371 0.56 4535302 88.67 4535302 70.07 4535302 1540.74 1704.73
APT18 5807988 0.66 5825956 39.50 5825956 129.76 5825956 215.25 388.37
APT19 6811338 0.51 6826674 48.88 6826674 28.93 6826674 337.51 419.70
APT20 5490828 0.54 5545818 112.36 5545818 8114.96 5545818 1039.89 9272.29
APT21 3479634 0.52 3484406 25.14 3491545 247.33 3491545 358.85 635.07
APT22 4111542 0.55 4145317 70.56 4153426 5139.29 4153426 1224.32 6438.58
APT23 3494778 0.53 3546535 25.99 3546535 1067.21 3546535 559.38 1656.34
APT24 3898694 0.69 3948037 73.38 3948037 12497.31 3948037 1639.73 14214.76
APT25 3485589 0.67 3507615 36.38 3507615 2026.71 3507615 612.73 2679.23
APT26 2639964 0.64 2683689 33.17 2683689 2290.99 2683689 985.56 3313.24
APT27 2382270 0.66 2438174 19.20 2438174 1283.44 2438174 412.72 1718.58
APT28 3969356 0.52 4065011 79.46 4065011 7946.36 4065011 2079.59 10109.82
APT29 3619071 0.50 3652858 63.10 3652858 5255.54 3652858 1276.47 6599.48
B1 7990710 0.68 7993031 118.17 7993031 25.13 7993031 337.64 485.55
B2 7984124 0.74 7993849 108.62 7993849 149.35 7993849 395.13 657.75
B3 7966146 0.67 7991615 129.17 7991615 35.04 7991615 406.55 575.43
B4 7979928 0.54 7989673 135.13 7989673 1316.49 7989673 492.63 1948.81
B5 7978160 0.55 7994752 101.15 7994752 30.28 7994752 319.74 455.67
B6 7989831 0.66 7992075 107.35 7992075 458.75 7992075 413.29 983.88
B7 7999488 0.83 8000000 47.09 – – – – 66.58

Table 3: Results obtained by a heuristic version of the Recursive Partitioning Algorithm for the
large instances. The sets of conic combinations were limited in the guillotine, five-block and
L-Algorithm phases of the method.

22

Instance
Two-stage Guillotine cuts Five-block Total

Solution Time (sec) Solution Time (sec) Solution Time (sec) time

GCUT14 12236280 0.70 12245410 205.18 12249200 150212.43 150422.13
GCUT15 12239904 0.60 12246032 224.15 12249200 172000.08 172229.49
GCUT16 12243100 0.70 12248836 312.87 12249200 227771.90 228091.34
GCUT17 12242998 0.61 12248892 408.31 12250000 245000.98 245417.90

APT10 3585612 0.68 3589703 54.98 3589833 22263.79 22319.45
APT11 4175414 0.56 4188915 81.36 4189860 33014.50 33099.53
APT12 5148302 0.72 5156065 20.22 5156618 9256.83 9279.67
APT13 3493072 0.71 3498302 55.75 3498302 22523.98 22583.18
APT14 4458052 0.54 4463550 50.40 4463550 20573.89 20627.23
APT15 6028426 0.73 6047188 70.08 6052277 36959.17 37032.87
APT16 7533987 0.52 7566719 96.11 7571590 51597.46 51697.39
APT17 4529371 0.57 4535302 87.79 4536372 33850.66 33942.20
APT18 5807988 0.72 5825956 36.83 5829172 15196.78 15236.43
APT19 6811338 0.56 6826674 48.43 6826674 27025.49 27076.86
APT20 5490828 0.70 5545818 111.39 5548505 59086.20 59201.01
APT21 3479634 0.67 3484406 24.58 3491545 12537.07 12564.35
APT22 4111542 0.56 4145317 69.35 4161384 32738.22 32810.68
APT23 3494778 0.71 3546535 25.49 3559028 13606.86 13635.08
APT24 3898694 0.68 3948037 73.03 3956498 36299.42 36375.59
APT25 3485589 0.70 3507615 34.62 3507615 14851.38 14888.59
APT26 2639964 0.50 2683689 32.43 2683689 13092.85 13127.84
APT27 2382270 0.56 2438174 18.42 2443696 6770.92 6791.78
APT28 3969356 0.56 4065011 79.07 4065011 39197.62 39279.83
APT29 3619071 0.70 3652858 61.30 3652858 28104.65 28169.23

Table 4: Results obtained by a heuristic version of the Recursive Partitioning Approach for
instances GCUT14–GCUT17 and APT10–APT29. The search depth limit was set to N = 1 in
the five-block phase and the complete conic combinations sets were used in all the phases of the
method.

23

1387× 7302037× 731

865× 839865× 839865× 839865× 839

1420× 9352076× 932

1420× 9352076× 932

1387× 730

1420× 935

1420× 935

891× 1664

1181× 833

1181× 833

2076× 932

865× 839 865× 839 865× 839 865× 839

(a) (b)

1444× 1492

2037× 731

1484× 1957

1003× 1129 1003× 1129

2002× 795

2002× 795

712× 1618

1387× 7301387× 730

1207× 786

780× 796

1206× 1128

2002× 795

1420× 935865× 839

1136× 990 1136× 990

(c) (d)

Figure 5: Graphical representations of solutions found by the Recursive Partitioning Algorithm
for instance UU10. (a) Optimal two-stage pattern with value 11,929,561. (b) Optimal guillotine
pattern with value 11,955,852. (c) First-order guillotine pattern with value 11,995,637. (d)
L-Algorithm pattern with value 12,001,291.

24

5 Concluding remarks

While a large number of studies in the literature have considered staged and non-staged
two-dimensional guillotine cutting problems, much less studies have considered two-dimensional
non-guillotine cutting problems (constrained and unconstrained), and only a few of them have
proposed exact methods to generate non-guillotine patterns. Moreover, most of the approaches
(exact and heuristic) for non-guillotine cutting (or packing) were developed for the constrained
problem, which can be more interesting for certain practical applications with relatively low
demands of the ordered items. However, part of these methods may not perform well when
solving the unconstrained problem. On the other hand, the unconstrained problem is particularly
interesting for cutting stock applications with large-scale production and weakly heterogeneous
items, in which the problem plays the role of a column generation procedure.

This study presented a Recursive Partitioning Approach to generate unconstrained two-
dimensional non-guillotine cutting (or packing) patterns. Since we were unable to find a coun-
terexample for which the approach fails, we conjecture that it always finds an optimal uncon-
strained non-guillotine cutting. The approach was able to find the optimal solution of a large
number of moderate-sized instances known in the literature. To cope with large instances, we
combined the approach with simple heuristics to reduce its computational efforts. For moderate-
sized instances, both the five-block and the L-Algorithm phases of the approach seem to be
promising alternatives for obtaining reasonably good or optimal non-guillotine solutions under
affordable computer runtimes, whereas for larger instances, the guillotine or the five-block phase
may be preferable, depending on the definition of an acceptable time limit. An interesting
perspective for future research is to extend the Recursive Partitioning Approach to deal with
constrained two-dimensional non-guillotine cutting.

The computer implementation of the algorithms as well as the data sets used in our experi-
ments and the solutions found are publicly available for benchmarking purposes at [68].

References

[1] R. Alvarez-Valdés, A. Parajón, and J. M. Tamarit. A tabu search algorithm for large-scale
guillotine (un)constrained two-dimensional cutting problems. Computers and Operations
Research, 29:925–947, 2002.

[2] R. Alvarez-Valdés, F. Parreño, and J. M. Tamarit. A GRASP algorithm for constrained two-
dimensional non-guillotine cutting problems. Journal of the Operational Research Society,
56:414–425, 2005.

[3] R. Alvarez-Valdés, F. Parreño, and J. M. Tamarit. A tabu search algorithm for a two-
dimensional non-guillotine cutting problem. European Journal of Operational Research,
183:1167–1182, 2007.

[4] M. Arenales and R. Morabito. An and/or-graph approach to the solution of 2-dimensional
non-guillotine cutting problems. European Journal of Operational Research, 84:599–617,
1995.

25

[5] M. Arenales, R. Morabito, and H. Yanasse. Cutting and packing problems (Special Issue).
Pesquisa Operacional, 19(2), 1999.

[6] R. Baldacci and M. A. Boschetti. A cutting-plane approach for the two-dimensional orthog-
onal non-guillotine cutting problem. European Journal of Operational Research, 183:1136–
1149, 2007.

[7] J. E. Beasley. Algorithms for unconstrained two-dimensional guillotine cutting. Journal of
the Operational Research Society, 36:297–306, 1985.

[8] J. E. Beasley. An exact two-dimensional non-guillotine cutting tree-search procedure. Op-
erations Research, 33:49–64, 1985.

[9] J. E. Beasley. A population heuristic for constrained two-dimensional non-guillotine cutting.
European Journal of Operational Research, 156:601–627, 2004.

[10] E. G. Birgin and R. D. Lobato. Orthogonal packing of rectangles within isotropic convex
regions. submitted.

[11] E. G. Birgin, R. D. Lobato, and R. Morabito. An effective recursive partitioning approach
for the packing of identical rectangles in a rectangle. Journal of the Operational Research
Society, 61:306–320, 2010.

[12] E. G. Birgin, J. M. Mart́ınez, W. F. Mascarenhas, and D. P. Ronconi. Method of sentinels
for packing items within arbitrary convex regions. Journal of the Operational Research
Society, 57:735–746, 2006.

[13] E. G. Birgin, J. M. Mart́ınez, F. H. Nishihara, and D. P. Ronconi. Orthogonal packing of
rectangular items within arbitrary convex regions by nonlinear optimization. Computers
and Operations Research, 33:3535–3548, 2006.

[14] E. G. Birgin, R. Morabito, and F. H. Nishihara. A note on an L-approach for solving
the manufacturer’s pallet loading problem. Journal of the Operational Research Society,
56:1448–1451, 2005.

[15] M. Biró and E. Boros. Network flows and nonguillotine cutting patterns. European Journal
of Operational Research, 16:215–221, 1984.

[16] E. Bischoff and G. Wäescher. Cutting and packing (Special Issue). European Journal of
Operational Research, 84(3), 1995.

[17] A. Bortfeldt and T. Winter. A genetic algorithm for the two-dimensional knapsack problem
with rectangular pieces. International Transactions in Operational Research, 16:685–713,
2009.

[18] M. A. Boschetti, A. Mingozzi, and E. Hadjiconstantinou. New upper bounds for the two-
dimensional orthogonal non-guillotine cutting stock problem. IMA Journal of Management
Mathematics, 13:95–119, 2002.

26

[19] A. Caprara and M. Monaci. On the two-dimensional knapsack problem. Operations Re-
search Letters, 32:5–14, 2004.

[20] C. S. Chen, S. M. Lee, and Q. S. Shen. An analytical model for the container loading
problem. European Journal of Operational Research, 80:68–76, 1995.

[21] D. Chen and W. Huang. A new heuristic algorithm for constrained rectangle-packing
problem. Asia-Pacific Journal of Operational Research, 24:463–478, 2007.

[22] G. F. Cintra, F. K. Miyazawa, Y. Wakabayashi, and E. C. Xavier. Algorithms for two-
dimensional cutting stock and strip packing problems using dynamic programming and
column generation. European Journal of Operational Research, 191:61–85, 2008.

[23] Y. Cui, Z. Wang, and J. Li. Exact and heuristic algorithms for staged cutting problems.
Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering
Manufacture, 219:201–207, 2005.

[24] Y. Cui and X. Zhang. Two-stage general block patterns for the two-dimensional cutting
problem. Computers and Operations Research, 34:2882–2893, 2007.

[25] K. A. Dowsland. Some experiments with simulated annealing techniques for packing prob-
lems. European Journal of Operational Research, 68:389–399, 1993.

[26] K. A. Dowsland and W. B. Dowsland. Packing problems. European Journal of Operational
Research, 56:2–14, 1992.

[27] H. Dyckhoff. A typology of cutting and packing problems. European Journal of Operational
Research, 44:145–159, 1990.

[28] H. Dyckhoff, G. Scheithauer, and J. Terno. Cutting and packing. In F. Maffioli M. Amico
and S. Martello, editors, Annoted Bibliographies in Combinatorial Optimization, Wiley
Interscience Series in Discrete Mathematics, chapter 22, pages 393–414. John Wiley and
Sons, New York, 1997.

[29] H. Dyckhoff and G. Wäscher. Cutting and packing (Special Issue). European Journal of
Operational Research, 44(2), 1990.

[30] J. Egeblad and D. Pisinger. Heuristic approaches for the two- and three-dimensional knap-
sack packing problem. Computers and Operations Research, 36:1026–1049, 2009.

[31] D. Fayard, M. Hifi, and V. Zissimopoulos. An efficient approach for large-scale two-
dimensional guillotine cutting stock problems. Journal of the Operational Research Society,
49:1270–1277, 1998.

[32] S. P. Fekete, J. Schepers, and J. C. van der Veen. An exact algorithm for higher-dimensional
orthogonal packing. Operations Research, 55:569–587, 2007.

[33] Y. G. G and M. K. Kang. A new upper bound for unconstrained two-dimensional cutting
and packing. Journal of the Operational Research Society, 53:587–591, 2002.

27

[34] P. C. Gilmore and R. E. Gomory. Multistage cutting stock problems of two and more
dimensions. Operations Research, 13:94–120, 1965.

[35] J. F. Gonçalves. A hybrid genetic algorithm-heuristic for a two-dimensional orthogonal
packing problem. European Journal of Operational Research, 183:1212–1229, 2007.

[36] E. Hadjiconstantinou and N. Christofides. An exact algorithm for general, orthogonal,
2-dimensional knapsack-problems. European Journal of Operational Research, 83:39–56,
1995.

[37] J. C. Herz. Recursive computational procedure for two-dimensional stock cutting. IBM
Journal of Research and Development, 16:462–469, 1972.

[38] M. Hifi. The DH/KD algorithm: a hybrid approach for unconstrained two-dimensional
cutting problems. European Journal of Operational Research, 97:41–52, 1997.

[39] M. Hifi. Exact algorithms for large-scale unconstrained two and three staged cutting prob-
lems. Computational Optimization and Applications, 18:63–88, 2001.

[40] M. Hifi. Cutting and packing problems (Special Issue). Studia Informatica Universalis,
2(1), 2002.

[41] M. Hifi and V. Zissimopoulos. A recursive exact algorithm for weighted two-dimensional
cutting. European Journal of Operational Research, 91:553–564, 1996.

[42] M. Hifi and V. Zissimopoulos. Une amélioration de l’algorithme récursif de Herz pour le
problème de découpe à deux dimensions. RAIRO, 30:111–125, 1996.

[43] E. Hopper and B. C. H. Turton. An empirical investigation of meta-heuristic and heuristic
algorithms for a 2D packing problem. European Journal of Operational Research, 128:34–57,
2001.

[44] W. Huang and D. Chen. An efficient heuristic algorithm for rectangle-packing problem.
Simulation Modelling Practice and Theory, 15:1356–1365, 2007.

[45] T. W. Leung, C. K. Chan, and M. D. Troutt. Application of a mixed simulated annealing-
genetic algorithm heuristic for the two-dimensional orthogonal packing problem. European
Journal of Operational Research, 145:530–542, 2003.

[46] L. Lins, S. Lins, and R. Morabito. An L-approach for packing (l, w)-rectangles into rect-
angular and L-shaped pieces. Journal of the Operational Research Society, 54:777–789,
2003.

[47] A. Lodi, S. Martello, and M. Monaci. Two-dimensional packing problems: A survey. Eu-
ropean Journal of Operational Research, 141:241–252, 2002.

[48] S. Martello. Knapsack, Packing and Cutting – Part I: One Dimensional Knapsack Problems
(Special Issue). INFOR, 32(3), 1994.

28

[49] S. Martello. Knapsack, Packing and Cutting – Part II: Multidimensional Knapsack and
Cutting Stock Problems (Special Issue). INFOR, 32(4), 1994.

[50] W. F. Mascarenhas and E. G. Birgin. Using sentinels to detect intersections of convex and
nonconvex polygons. Computational and Applied Mathematics. To appear.

[51] R. Morabito, M. Arenales, and V. F. Arcaro. An and-or-graph approach for two-dimensional
cutting problems. European Journal of Operational Research, 58:263–271, 1992.

[52] R. Morabito, M. N. Arenales, and H. H. Yanasse. Cutting, packing and related problems
(Special Issue). International Transactions in Operational Research, 16(6), 2009.

[53] R. Morabito and S. Morales. A simple and effective recursive procedure for the manufac-
turer’s pallet loading problem. Journal of the Operational Research Society, 49:819–828,
1998.

[54] R. Morabito and S. Morales. A simple and effective recursive procedure for the manufac-
turer’s pallet loading problem (49, pp. 819–828, 1998). Journal of the Operational Research
Society, 50:876–876, 1999.

[55] J. F. Oliveira and G. Wäescher. Cutting and packing (feature cluster). European Journal
of Operational Research, 183(3), 2007.

[56] M. Padberg. Packing small boxes into a big box. Mathematical Methods of Operations
Research, 52:1–21, 2000.

[57] V. Parada, L. Pradenas, M. Solar, and R. Palma. A hybrid algorithm for the non-guillotine
cutting problem. Annals of Operations Research, 117:151–163, 2002.

[58] G. Scheithauer. LP-based bounds for the container and multi-container loading problem.
International Transactions in Operational Research, 6:199–213, 1999.

[59] G. Scheithauer and J. Terno. Modeling of packing problems. Optimization, 28:63–84, 1993.

[60] G. Scheithauer and J. Terno. The G4-heuristic for the pallet loading problem. Journal of
the Operational Research Society, 47:511–522, 1996.

[61] A. Soke and Z. Bingul. Hybrid genetic algorithm and simulated annealing for two-
dimensional non-guillotine rectangular packing problems. Engineering Applications of Ar-
tificial Intelligence, 19:557–567, 2006.

[62] P.E. Sweeney and E. R. Paternoster. Cutting and packing problems - a categorized,
application-orientated research bibliography. Journal of the Operational Research Society,
43:691–706, 1992.

[63] R.D. Tsai, E.E. Malstrom, and W. Kuo. 3-dimensional palletization of mixed box sizes.
IIE Transactions, 25:64–75, 1993.

[64] G. Wäescher, H. Haußner, and H. Schumann. An improved typology of cutting and packing
problems. European Journal of Operational Research, 183:1109–1130, 2007.

29

[65] P. Y. Wang and G. Wäscher. Cutting and packing (Special Issue). European Journal of
Operational Research, 141(2), 2002.

[66] L. Wei, D. Zhang, and Q. Chen. A least wasted first heuristic algorithm for the rectangular
packing problem. Computers and Operations Research, 36:1608–1614, 2009.

[67] http://www.fe.up.pt/esicup/.

[68] http://www.ime.usp.br/∼egbirgin/packing/.

30

