
Constrained optimization with integer and continuous variables

using inexact restoration and projected gradients∗

E. G. Birgin† R. D. Lobato‡ J. M. Mart́ınez‡

September 23, 2016

Abstract

Inexact restoration (IR) is a well established technique for continuous minimization prob-
lems with constraints that can be applied to constrained optimization problems with specific
structures. When some variables are restricted to be integer, an IR strategy seems to be
appropriate. The IR strategy employs a restoration procedure in which one solves a standard
nonlinear programming problem and an optimization procedure in which the constraints are
linearized and techniques for mixed-integer (linear or quadratic) programming can be em-
ployed.

Key words: Inexact restoration, mixed-integer nonlinear programming (MINLP), projected
gradients.

1 Introduction

Many practical problems involve the necessity of solving constrained optimization problems
with integer and continuous variables (MINLP). See [16, 17, 24], among many others. In the
present century, several algorithms for linear or quadratic mixed (continuous and integer) op-
timization are able to solve problems with hundreds of thousands or even millions of variables
and, moreover, several packages for large-scale nonlinear optimization are available (see [10] and
the references therein). As a consequence, the idea of designing MINLP algorithms that use the
available software for nonlinear programming and mixed-integer linear-quadratic programming
is very attractive.

In this paper, we suggest that the inexact restoration framework provides an adequate scheme
for combining mixed-integer (linear or quadratic) programming software and nonlinear program-
ming software in a fruitful way.
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This paper is organized as follows. In Section 2, we present an inexact restoration algorithm
for solving MINLP problems. In Section 3, we discuss some implementation details. In Section 4,
we present numerical examples to illustrate the application of the proposed method. Finally, we
draw some conclusions in Section 5.

Notation. The symbol ‖ ·‖ denotes the Euclidean norm of vectors and matrices. Given a ∈ Rn,
we define a+ as the n-dimensional vector whose i-th component is max{ai, 0} and a− as the
n-dimensional vector whose i-th component is min{ai, 0}.

2 Algorithm

The problem considered in this paper is

Minimize f(x, y) (1)

subject to
h(x, y) = 0, g(x, y) ≤ 0, (2)

x ∈ X, y ∈ Y, yi integer for all i, X and Y are boxes, (3)

x and y have nx and ny components, respectively, f : Rnx+ny → R, h : Rnx+ny → Rm,
g : Rnx+ny → Rp, and all the functions are sufficiently differentiable.

From now on, we define

H(x, y) = ‖h(x, y)‖+ ‖g(x, y)+‖,

and
Φ(x, y, θ) = θf(x, y) + (1− θ)H(x, y).

As mentioned in [8], the idea of IR methods [3, 6, 9, 13, 14, 15, 23, 26, 27, 28, 29] is that, at
each iteration, feasibility and optimality are addressed in different phases. In the Restoration
Phase the algorithms aim to improve feasibility and in the Optimization Phase they aim to
improve optimality, preserving a linear approximation of feasibility. An IR method that applies
to problem (1) is described below.

Algorithm 2.1.

Let x0 ∈ X, y0 ∈ Y ∩ Zny , r ∈ (0, 1), β > 0, σ0 ≥ 0, and θ0 ∈ (0, 1) be given. Set k ← 0.

Step 1. (Restoration)

Compute xkrest ∈ X and ykrest ∈ Y ∩ Zny such that

H(xkrest, y
k
rest) ≤ rH(xk, yk) (4)
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and
f(xkrest, y

k
rest) ≤ f(xk, yk) + βH(xk, yk). (5)

Step 2. (Updating the Penalty Parameter θ)

If

Φ(xkrest, y
k
rest, θk) ≤ Φ(xk, yk, θk) +

1− r
2

(
H(xkrest, y

k
rest)−H(xk, yk)

)
, (6)

set θk+1 = θk. Otherwise, set

θk+1 =
(1 + r)

(
H(xk, yk)−H(xkrest, y

k
rest)

)
2
(
f(xkrest, y

k
rest)− f(xk, yk) +H(xk, yk)−H(xkrest, y

k
rest))

) . (7)

Step 3. (Optimization Phase)

Solve the following mixed-integer (linear or quadratic) optimization problem:

Minimize f ′x(xkrest, y
k
rest)(x− xkrest) + f ′y(x

k
rest, y

k
rest)(y − ykrest) + σk‖(x, y)− (xkrest, y

k
rest)‖2 (8)

subject to
h′x(xkrest, y

k
rest)(x− xkrest) + h′y(x

k
rest, y

k
rest)(y − ykrest) = 0, (9)

g′x(xkrest, y
k
rest)(x− xkrest) + g′y(x

k
rest, y

k
rest)(y − ykrest) + g(xkrest, y

k
rest)− ≤ 0, (10)

x ∈ X and y ∈ Y ∩ Zny , (11)

obtaining xtrial and ytrial.

Step 4. (Acceptance or Rejection of the Trial Step)

Test the conditions

f(xtrial, ytrial) ≤ f(xkrest, y
k
rest)− σk(‖xtrial − xkrest‖2 + ‖ytrial − ykrest‖2) (12)

and

Φ(xtrial, ytrial, θk+1) ≤ Φ(xk, yk, θk+1) +
1− r

2

(
H(xkrest, y

k
rest)−H(xk, yk)

)
. (13)

If both (12) and (13) are fulfilled, define xk+1 = xtrial, y
k+1 = ytrial, update k ← k + 1,

set σk+1 = 0, and go to Step 1. Otherwise, choose a new value for σk between 1 + 10σk and
1 + 1000σk, and go to Step 3.
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3 Practical implementation

In order to take advantage of available consolidated software, the Restoration Step will be
implemented in such a way that, for a fixed yk, the point xkrest so far computed should be the
result of applying a robust nonlinear programming algorithm to the problem

Minimize f(x, yk) subject to h(x, yk) = 0, g(x, yk) ≤ 0, (14)

and x ∈ X. Following this idea, we will define ykrest = yk. Moreover, the conditions (4) and (5)
may be used as stopping criteria for the nonlinear programming solver.

Let us consider now the Optimization Step. Observe that the minimizer of

f(xkrest, y
k
rest) + f ′x(xkrest, y

k
rest)(x−xkrest) + f ′y(x

k
rest, y

k
rest)(y− ykrest) +σk[‖x−xkrest‖2 + ‖y− ykrest‖2]

for (x, y) in a polytope is the projection of (xkrest, y
k
rest)− 1

2σk
∇f(xkrest, y

k
rest) onto the polytope. Of

course, with the constraint that y should be integer, this statement is not really true. However,
because of the observation above, the procedure in the Optimization Phase can be interpreted as
a projected gradient integer step. Well established results about the Spectral Projected Gradient
method recommend to compute σk using the spectral choices suggested in [2, 4, 7, 11, 12, 13,
19, 31, 32] and many others. For solving the mixed-integer (linear or quadratic) optimization
subproblem we may use CPLEX [25].

4 Numerical examples

To illustrate the method proposed in this work, we consider two mixed-integer nonlinear
programming problems: a circle packing problem and the traveling salesman problem with
neighborhoods.

4.1 Circle packing

The circle packing problem can be defined as follows. We are given a circle C (which we call
the container) with radius R, centered at the origin, and N circles (which we call the items)
with radii r1, . . . , rN . We assume that ri ≤ R for each i ∈ {1, . . . , N}. The problem consists in
selecting a subset of the given items. The selected items must be arranged inside the container
and must not overlap with each other. The objective is to maximize the sum of the areas of the
selected items.

We can model this problem as a mixed-integer nonlinear programming problem. The vari-
ables of the model will be yi ∈ {0, 1}, i ∈ {1, . . . , N}, that define which items will be selected
(yi = 1 if and only if item i is selected), and ci ∈ R2, i ∈ {1, . . . , N}, which determine the centers
of the items (in case they are selected). The objective is therefore to minimize

−
N∑
i=1

yir
2
i (15)

subject to the conditions that each selected item must be contained in C

‖ci‖22 ≤ (R− ri)2, ∀i ∈ {1, . . . , N} (16)
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and that the selected items must not overlap with each other

‖ci − cj‖22 ≥ (ri + rj)
2(yi + yj − 1), ∀i, j ∈ {1, . . . , N} such that i < j. (17)

If both yi and yj are equal to 1, then constraint (17) becomes ‖ci − cj‖22 ≥ (ri + rj)
2, which

means that the circles with indices i and j must not overlap with each other. Otherwise, if
yi = 0 or yj = 0, then the right-hand side of constraint (17) is a nonpositive number, in which
case (17) represents no restraint, imposing no condition on ci and cj .

We implemented model (15)–(17) and Algorithm 2.1 in AMPL [18]. In the Restoration Step,
in order to compute xkrest and ykrest that satisfy (4) and (5), we solve problem (14). This is a
nonlinear programming problem obtained by fixing the integer variables of the original problem
to yk. In our packing problem, the integer variables determine which items are selected. Since
the objective function (15) depends only on the integer variables, problem (14) becomes a
feasibility problem. More specifically, it is the problem of arranging the selected items within
the container, i.e., finding the center of the items such that (16) and (17) are satisfied. To solve
problem (14), we use Algencan [1, 10] version 3.0.0, which is available for downloading at the
TANGO Project web page (http://www.ime.usp.br/~egbirgin/tango/). The Optimization
Phase is responsible for selecting the items. We use AMPL/CPLEX version 12.6.3.0 to solve
problem (8)–(11).

Making a parallel with the notation used in the description of Algorithm 2.1, we have xk =
(ck1, . . . , c

k
N ) ∈ R2N as the sequence of continuous iterates. Initially, we set y01 = 1 and y0i = 0

for all i ∈ {2, . . . , N}, and c0i is chosen uniformly random in [−R,R]2 for all i ∈ {1, . . . , N}. We
have chosen r = 0.5, β = 1, σ0 = 1, and θ0 = 0.1. In our implementation of the Algorithm 2.1,
we keep track of the best (feasible) solution found so far. We considered two instances with
N = 10 items. In the first instance, the radius of the container is R = 1 and the radius of the
i-th item is ri = 0.05i for i ∈ {1, . . . , N}. In the second instance, the radius of the container is
also R = 1 and the radius of the i-th item is ri = 0.5i−2/5 for i ∈ {1, . . . , N}.

Table 1 shows the result we have obtained for the first instance. The first column shows
the number of the iteration where the current best solution was updated. The second column
displays the items that were selected at that solution. The third column presents the objective
function value for that solution. For each iteration before iteration 16 that is not shown in the
first column of the table, the set of selected items at that iteration is the same as the set chosen
at the previous iteration. Figures 1(a)–(f) depict graphical representations of the solutions
found at iterations 3, 4, 8, 9, 12, and 16, respectively. The number displayed within each circle
indicates the index of the circle. The results for the second instance are presented in Table 2.
Figures 2(a)–(c) exhibit the solutions found at iterations 8, 19, and 69, respectively.

4.2 Traveling salesman problem with neighborhoods

The traveling salesman problem with neighborhoods [5, 22] is an extension of the classical
traveling salesman problem. We are given N regions (neighborhoods) and the objective is to
find the shortest route that visits each region and returns to the initial departure point. We say
that a route visits a region if it passes through a point that belongs to that region.

We can formulate the problem as follows. Let V = {1, . . . , N} be the set of indices of the
regions and E = {(i, j) ∈ V 2 | i < j}. Let Ri ⊆ Rn for each i ∈ V be the given regions.
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Iteration Selected items Solution value

1 1 −0.0025
3 1, 2, 3, 5, 7, 9, 10 −0.6725
4 1, 2, 3, 4, 5, 7, 9, 10 −0.7125
8 1, 2, 4, 6, 7, 9, 10 −0.7175
9 1, 3, 4, 6, 7, 9, 10 −0.73
12 1, 2, 3, 4, 6, 7, 9, 10 −0.74
16 1, 2, 3, 4, 6, 8, 9, 10 −0.7775

Table 1: Sequence of selected items in the current best solutions found by the algorithm for the
first instance, where ri = 0.05i for i ∈ {1, . . . , N}.

1

2

3

5

7

9

10

1

2

3

4

5

7

9

10

1

2

4

6

7

9

10

(a) (b) (c)

1

3

4

6

7

9

10

1

2

3

4

6

7

9

10

1

2

3

4

6

8

9

10

(d) (e) (f)

Figure 1: Illustration of the current best solution found by the algorithm at iterations 3, 4, 8,
9, 12, and 16 for the first instance, where ri = 0.05i for i ∈ {1, . . . , N}.

For each i ∈ V , we let xi ∈ Rn be a variable representing a point in Ri where the route must
pass through. For each (i, j) ∈ E, let yij be a binary variable that indicates whether the route
goes from point xi to xj (or from point xj to xi), i.e., there is an edge connecting xi and xj .
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Iteration Selected items Solution value

1 1 −0.03962
8 1, 2, 3, 4, 6, 7, 9, −0.73530
19 1, 2, 4, 5, 6, 7, 8, 9, −0.74784
69 1, 2, 3, 5, 6, 7, 8, 10 −0.76570

Table 2: Sequence of selected items in the current best solutions found by the algorithm for the
second instance, where ri = 0.5i−2/5 for i ∈ {1, . . . , N}.
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Figure 2: Illustration of the current best solution found by the algorithm at iterations 8, 19,
and 69 for the second instance, where ri = 0.5i−2/5 for i ∈ {1, . . . , N}.

Considering the Euclidean distance between the points, the objective is to minimize∑
(i,j)∈E

yij‖xi − xj‖2. (18)

We consider that each region is an ellipsoid, so that xi ∈ Ri for each i ∈ V can be formulated as

(xi − ci)>Mi(xi − ci) ≤ 1, for each i ∈ V, (19)

where ci ∈ Rn is the center of the ellipsoid and Mi ∈ Rn×n is symmetric and definite positive.
Since the route must goes into and out each region, we must have

i−1∑
j=1

yji +
N∑

j=i+1

yij = 2, for each i ∈ V. (20)

Finally, to guarantee that the route connects all regions, there must be a path that connects
any subset of the regions to a region outside of that subset:

∑
i∈S

(∑
j∈S
j<i

yji +
∑
j∈S
j>i

yij

)
≤ |S| − 1, for each S ⊆ V, |S| ≥ 3. (21)
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Instance Iteration Solution value

tspn2DE5 1
1 213.11675
2 191.25520

tspn2DE10 1
1 469.48924
2 225.12607

tspn2DE15 1

1 646.72179
2 345.52009
3 291.23176
39 290.41621
53 290.34240
104 290.32966
131 290.32527
282 289.71628

Table 3: Progress of the current best solution.

We implemented model (18)–(21) and Algorithm 2.1 in AMPL. In the Restoration Step, in
order to compute xkrest and ykrest that satisfy (4) and (5), we solve problem (14) as in the previous
section. By fixing the integer variables of the original problem to yk, the route is determined
and the problem (14) becomes the problem of finding the points xi ∈ Ri, for i ∈ V , such that
the length of the route (18) is minimized. To solve problem (14), we also use Algencan version
3.0.0. To solve problem (8)–(11), we use AMPL/CPLEX version 12.1.0.

The sequence of continuous iterates generated by Algorithm 2.1 is xk = (xk1, . . . , x
k
N ) ∈ RnN ,

where xki ∈ Rn for each i ∈ V , and the sequence of binary iterates is yk = (ykij)(i,j)∈E ∈ {0, 1}|E|.
We considered three instances introduced in [22] that are available from [21]. The instances are
tspn2DE5 1, tspn2DE10 1, and tspn2DE15 1, which are formed by 5, 10, and 15 ellipsoids in
R2, respectively. Initially, we set y0i,i+1 = 1, for each i ∈ V , y01N = 1, and y0ij = 0 for each

(i, j) ∈ E such that j 6= i + 1 and (i, j) 6= (1, N). Also, for each i ∈ V , x0i is chosen uniformly
random within Ri. As in the previous experiments, we have chosen r = 0.5, β = 1, σ0 = 1, and
θ0 = 0.1.

Table 3 presents the results we have obtained for these three instances. It shows the evolution
of the current best solution found by Algorithm 2.1. The first column presents the name of the
instance. The second column shows the number of the iteration. The third column shows the
value of the solution at that iteration. Figure 3 depicts the best solutions for the instances
tspn2DE5 1 and tspn2DE10 1. Figure 4 illustrates the best solution found for the instance
tspn2DE15 1. The number within each ellipse indicates the index of the region and the point
highlighted is the point in the region at which the route passes through.
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Figure 3: Illustration of the solutions found for the instances tspn2DE5 1 and tspn2DE10 1.

5 Conclusions

In this paper, we consider the mixed-integer nonlinear programming problem. This general
problem is very difficult to solve. Even restricting the functions to be linear or removing the
integrality constraints, this problem is NP-hard [20, 30]. This problem has been tackled by
different deterministic global optimization approaches [17, 33, 34], which include branch-and-
bound, generalized Benders decomposition, outer approximation, the extended cutting-plane
method, branch-and-cut, and reformulation-linearization/convexification, for example. How-
ever, all those global optimization strategies cannot, in general, be applied to large-scale in-
stances like the ones that appear in practice. The method introduced in the present work can
be interpreted as an heuristic that suggests which realizations of the integer variables should
be explored. Moreover, this method is relatively simple to implement and can take advantage
of consolidated software for solving nonlinear programming problems and mixed-integer lin-
ear/quadratic programming problems.

Acknowledgements. The authors are thankful to the anonymous referees for their comments
and suggestions.
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Figure 4: Illustration of the solution found for the instance tspn2DE15 1.
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[27] N. Krejić and J. M. Mart́ınez. Inexact Restoration approach for minimization with inexact
evaluation of the objective function. Mathematics of Computation, 85:1775–1791, 2016.

[28] J. M. Mart́ınez. Inexact-Restoration Method with Lagrangian Tangent Decrease and New
Merit Function for Nonlinear Programming. Journal of Optimization Theory and Applica-
tions, 111(1):39–58, 2001.

12



[29] J. M. Mart́ınez and E. A. Pilotta. Inexact-restoration algorithm for constrained optimiza-
tion. Journal of Optimization Theory and Applications, 104(1):135–163, 2000.

[30] K. G. Murty and S. N. Kabadi. Some NP-complete problems in quadratic and nonlinear
programming. Mathematical Programming, 39(2):117–129, 1987.

[31] M. Raydan. On the Barzilai and Borwein choice of steplength for the gradient method.
IMA Journal of Numerical Analysis, 13(3):321–326, 1993.

[32] M. Raydan. The Barzilai and Borwein Gradient Method for the Large Scale Unconstrained
Minimization Problem. SIAM Journal on Optimization, 7(1):26–33, 1997.

[33] H. D. Sherali and W. P. Adams. A Reformulation-Linearization Technique for Solving Dis-
crete and Continuous Nonconvex Problems. Nonconvex Optimization and Its Applications.
Springer US, 1999.

[34] M. Tawarmalani and N. V. Sahinidis. Convexification and Global Optimization in Con-
tinuous and Mixed-Integer Nonlinear Programming: Theory, Algorithms, Software, and
Applications. Nonconvex Optimization and Its Applications. Springer US, 2002.

13


