
Orthogonal packing of identical rectangles within isotropic convex

regions∗

Ernesto G. Birgin† Rafael D. Lobato†

June 18, 2010

Abstract

A mixed integer continuous nonlinear model and a solution method for the problem of
orthogonally packing identical rectangles within an arbitrary convex region are introduced
in the present work. The convex region is assumed to be made of an isotropic material in
such a way that arbitrary rotations of the items, preserving the orthogonality constraint, are
allowed. The solution method is based on a combination of branch and bound and active-set
strategies for bound-constrained minimization of smooth functions. Numerical results show
the reliability of the presented approach.

Key words: Packing and cutting of rectangles, orthogonal packing, isotropic convex regions,
feasibility problems, nonlinear programming, models

1 Introduction

Many packing and cutting problems can be adequately modeled by nonlinear programming
(NLP). On the one hand, nonlinearities can easily handle the essence of the original problem,
while discrete models may be such that their solutions are only approximations to the solutions
of the original problem. On the other hand, in most cases, the global solution of the NLP
models may be required, and finding the global solution of general NLP problems is a difficult
task for which much research is expected in the following years (see, for example, [4, 17] and
the references therein). Whether or not dealing with nonlinearities is profitable depends on the
packing problem at hand.

Packing problems for which nonlinear approaches proved to be effective and efficient include
the packing of circles (or cylinders) and spheres [5, 13, 15], and the packing of rectangles within
arbitrary convex regions with a variety of positioning constraints [9, 10, 27]. In [25, 26], Pack-
mol was introduced as successful tool for building initial configurations for molecular dynamics
simulations, based on the packing of spheres by nonlinear optimization. Hybrid methods that
combine nonlinear models with heuristics have also been considered in [21, 22, 24, 28, 31, 32],
∗This work was partly supported by PRONEX-Optimization (PRONEX - CNPq / FAPERJ E-26 /

171.510/2006 - APQ1), FAPESP (Grants 2006/53768-0, 2006/57984-6 and 2006/58313-0) and CNPq.
†Department of Computer Science, Institute of Mathematics and Statistics, University of São Paulo, Rua do

Matão 1010, Cidade Universitária, 05508-090 São Paulo, SP, Brazil ({egbirgin | lobato}@ime.usp.br).

1

among others, for packing identical or different circular pieces within several types of objects.
In [36], mixed integer linear and nonlinear formulations for staged cutting problems and 2-stage
two-dimensional guillotine cutting patterns are reviewed. In [29, 34, 35], mixed integer nonlinear
models for cutting problems based on p-group cutting patterns are introduced. The introduced
models are linearized by classical techniques – paying the price of adding new binary variables
to the models – and then solved with the modelling language GAMS and the solver CPLEX.

In the present work, we deal with the problem of packing (or cutting) identical rectangular
items within an arbitrary convex two-dimensional object. The object is made of an isotropic
material and therefore it does not impose any constraints on the orientation of the items being
packed. The cutting process, however, requires the items to satisfy an orthogonality constraint,
i.e. only rotations of ninety degrees with respect to a unique angle of rotation for all the items
are allowed. The unique angle of rotations (other than the ninety degrees rotations) for the
whole set of items can also be regarded as a rotation of the object. Given the object and the
dimensions of the identical items, the goal is to pack as many items as possible within the
object and without overlapping. The problem can be classified as “two-dimensional, rectangular
identical item packing problem (IIPP)” according to the typology introduced in [33].

The present approach is related to two previously published works [9, 10] that also deal
with the packing of identical rectangles within arbitrary convex regions. The difference between
the present approach and previous ones pertains to the positioning constraints applied to the
rectangular items. In [10], the orientation of the object and the items is fixed and only ninety-
degree rotations are allowed. In this sense, the decision space of the problem tackled in the
present research is larger and, as a result, solutions with more packed items are expected.
On the other hand, the problem presented in [9] considers an individual angle of rotation for
each rectangle. The overlapping of such rectangles is a hard-to-model computational geometry
problem that was accomplished using continuous and differentiable constraints, with the help
of the Sentinels concept [9, 27]. While this is the model whose global optimal solution implies
the largest number of packed items, the difficulty in finding such global optimal solution may
result in poor quality solutions for the associated packing problem. Using the model introduced
in the present work may be useful, even when the orthogonality constraint between the items
is not imposed by the real packing problem. Figure 1 illustrates the kind of solutions found by
the three different approaches.

A nonlinear model and a solution method are introduced in the present paper. For a given
number of items, the packing model consists of minimizing the overlapping between the items
subject to being accommodated within the object. The objective function is continuous and
differentiable with respect to the continuous variables and there are integrality constraints in
a subset of the decision variables. The solution method is based on a combination of branch
and bound and a modern active-set strategy for bound-constrained minimization of smooth
functions [8]. In order to be able to apply such techniques, a desirable property of the introduced
model is pursued: the relaxed version of the model (ignoring the integrality constraints) to be
continuous and differentiable with respect to all its decision variables. For packing as many
items as possible, problems with an increasing number of items are considered.

The paper is organized as follows. In Section 2, the mixed integer continuous nonlinear
model is derived. Section 3 describes the solution method. Numerical results are presented and
analyzed in Section 4. Section 5 summarizes the conclusions and includes some lines for future

2

(a) (b) (c)

Figure 1: The three problems consist in packing identical rectangular items within a convex
region, but different positioning constraints are imposed on the items. Graphics (a) and (b)
represent the case in which an orthogonality constraint is imposed to the items. (a) deals with
an anisotropic object while the isotropic-object case is represented in (b). In (c), the case of
an isotropic object without any positioning constraint imposed on the items is illustrated. The
packing in (a) contains 26 rectangles, while the packings in (b) and (c) contain 28 rectangles.

research.

2 Mixed integer continuous nonlinear model

Let Ω = {x ∈ R2 | gj(x) ≤ 0, j = 1, . . . ,m} be a convex subset of R2. For all k = 1, . . . , N ,
consider a rectangle R(ak, bk) centered at the origin of the two-dimensional Cartesian coordinate
system with ak, bk > 0 being the fixed values of its horizontal and vertical sides, respectively.
Assume that we want to place those N rectangles in such a way that the interior of the intersec-
tion of any pair of different rectangles is empty and they are contained in Ω. (Since Ω is convex,
the fact that the vertices of a rectangle are in Ω is enough to guarantee that the rectangle is
contained in Ω.) Moreover, assume that an orthogonality constraint is imposed on any pair of
rectangles, i.e. sides of any two different rectangles must be parallel or perpendicular to each
other.

Let θ ∈ R be a variable anticlockwise rotation angle common to all the N rectangles. Let
Ck ∈ R2 be the variable center of R(ak, bk), and let pk ∈ {0, 1} be a binary variable, which
indicates whether an extra ninety-degree rotation is being applied to R(ak, bk) (pk = 1) or not
(pk = 0), independently of the common rotation angle θ. Then, the problem, called PackN from
now on, consists of finding values for the 3N + 1 variables θ ∈ R, Ck ∈ R2 and pk ∈ {0, 1},
for k = 1, . . . , N , such that the N rectangles R(ak, bk) – with displacements Ck, ninety-degree
rotations represented by pk and the common rotation given by θ – are contained in Ω without
overlapping.

Given a rectangle R(a, b) with horizontal side a and vertical side b and p ∈ [0, 1] ⊂ R, define
the length and the height as

`(a, b, p) = (1− p) a+ p b and h(a, b, p) = (1− p) b+ p a, k = 1, . . . , N. (1)

Note that if p = 0 then the rectangle with length `(a, b, p) and height h(a, b, p) coincides

3

with R(a, b). If p = 1, however, the rectangle with length `(a, b, p) and height h(a, b, p) co-
incides with a ninety-degree rotation of R(a, b), i.e. coincides with R(b, a).

Let Q(θ) be the anticlockwise rotation matrix

Q(θ) =
(

cos θ − sin θ
sin θ cos θ

)
. (2)

Using (1–2) and considering an angle of rotation θ, a displacement C with respect to the
origin and an orthogonal rotation represented by p ∈ {0, 1}, it becomes clear that the four
vertices of a rectangle R(a, b) are given by:

Vsw(R(a, b), C, p, θ) = C +Q(θ)
(
−0.5 `(a, b, p)
−0.5 h(a, b, p)

)
,

Vse(R(a, b), C, p, θ) = C +Q(θ)
(

0.5 `(a, b, p)
−0.5 h(a, b, p)

)
,

Vne(R(a, b), C, p, θ) = C +Q(θ)
(

0.5 `(a, b, p)
0.5 h(a, b, p)

)
,

Vnw(R(a, b), C, p, θ) = C +Q(θ)
(
−0.5 `(a, b, p)

0.5 h(a, b, p)

)
.

(3)

Referring to the four vertices of rectangle R(ak, bk) as V k
i ≡ Vi(R(ak, bk), Ck, pk, θ) for all i ∈

D = {sw, se,ne, nw} and k = 1, . . . , N , the constraints that state the rectangles must belong to
Ω can be modeled as

V k
i ∈ Ω for all i ∈ D and k = 1, . . . , N

or
gj(V k

i) ≤ 0 for all i ∈ D, j = 1, . . . ,m, and k = 1, . . . , N (4)

plus pk ∈ {0, 1}, for k = 1, . . . , N . Provided gj(·), j = 1, . . . ,m, are continuous and differentiable
functions and by the differentiability of (1–3), we have that constraints (4) are continuous and
differentiable with respect to the decision variables Ck, pk and θ.

Consider a pair of rectangles R(ak1 , bk1) and R(ak2 , bk2) with displacements Ck1 and Ck2 ,
orthogonal rotations represented by pk1 , pk2 ∈ {0, 1}, and a common angle of rotation θ. The
horizontal and vertical coordinate-wise distances with respect to the θ anticlockwise rotation
of the Cartesian system of coordinates, between the displacements Ck1 and Ck2 are given by
|d(Ck1 , Ck2 , θ)x| and |d(Ck1 , Ck2 , θ)y|, respectively, where

d(Ck1 , Ck2 , θ) ≡
(
d(Ck1 , Ck2 , θ)x

d(Ck1 , Ck2 , θ)y

)
= Q(θ)T (Ck1 − Ck2).

Then, the non-overlapping constraint between R(ak1 , bk1) and R(ak2 , bk2) can be modeled as

| d(Ck1 , Ck2 , θ)x | ≥ (`(ak1 , bk1 , pk1) + `(ak2 , bk2 , pk2))/2

or

| d(Ck1 , Ck2 , θ)y | ≥ (h(ak1 , bk1 , pk1) + h(ak2 , bk2 , pk2))/2.

(5)

4

Squaring both sides of inequalities in (5), substituting t ≤ 0 by max{0, t}2 = 0 and replacing
(t1 = 0 or t2 = 0) by t1×t2 = 0, the non-overlapping constraints between every pair of rectangles
can be written as the continuous and differentiable constraints

max
{

0, (`(ak1 , bk1 , pk1) + `(ak2 , bk2 , pk2))2/4− [d(Ck1 , Ck2 , θ)x]2
}2 ×

max
{

0, (h(ak1 , bk1 , pk1) + h(ak2 , bk2 , pk2))2/4− [d(Ck1 , Ck2 , θ)y]2
}2 = 0,

for all k1 = 1, . . . , N − 1 and k2 = k1 + 1, . . . , N,

(6)

and pk ∈ {0, 1}, for k = 1, . . . , N . Note that squaring the maximum with zero is necessary to
obtain differentiability.

So, problem PackN can be modeled as a continuous and differentiable feasibility problem
given by (4) and (6) plus the constraints pk ∈ {0, 1}, for k = 1, . . . , N . Solving the feasibility
problem is equivalent to finding a global minimizer with zero-valued objective function of the
optimization problem

minimize f(θ, C1, . . . , CN , p1, . . . , pN) subject to pk ∈ {0, 1} for k = 1, . . . , N, (7)

where

f(θ, C1, . . . , CN , p1, . . . , pN) =
∑N

k=1

∑m
j=1

∑
i∈D max{0, gj(V k

i)}2 +∑N−1
k1=1

∑N
k2=k1+1 max

{
0, (`(ak1 , bk1 , pk1) + `(ak2 , bk2 , pk2))2/4− [d(Ck1 , Ck2 , θ)x]2

}2×
max

{
0, (h(ak1 , bk1 , pk1) + h(ak2 , bk2 , pk2))2/4− [d(Ck1 , Ck2 , θ)y]2

}2
.

(8)
Note that non-identical rectangles are being considered. Hence, the presented model can be

used to pack a given fixed set of non-identical rectangles within a convex region. Considering
that all rectangles are identical, the packing problem of packing as many identical rectangles as
possible can be modeled as finding the largest integer value of N such that the minimum of (7–8)
is equal to zero (or such that the feasibility problem given by (4) and (6) plus pk ∈ {0, 1}, for
k = 1, . . . , N , is solvable).

3 Solution method

In this section, we describe a branch and bound method to solve problems of the form:

minimize f(x) subject to ` ≤ x ≤ u, xi ∈ Z for all i ∈ I,

where f : Rn → R is a smooth nonlinear and generally nonconvex function, I ⊆ {1, . . . , n} is the
set of indices of the variables with integrality constraints, and −∞ < `i ≤ ui <∞,∀ i ∈ I. In the
branch and bound algorithm, each node of the tree corresponds to a subproblem, which is defined
by a mixed integer bound-constrained minimization problem. The relaxed subproblem associated
with a subproblem is defined as the subproblem itself without its integrality constraints. In other
words, relaxed subproblems are bound-constrained minimization problems.

In the search tree, a node is fathomed in three different situations: S1. The associated
subproblem is infeasible (it can be trivially checked); S2. The optimal solution of the relaxed

5

associated subproblem satisfies the integrality constraints (and, therefore, there is no further
need for branching); and S3. The optimal value of the relaxed associated subproblem, that is
a lower bound on the optimal value of the (non-relaxed) associated subproblem, is greater than
or equal to the value of the current incumbent solution.

The selection of a node to solve follows the depth-first rule. When a node is branched, two
nodes are generated by splitting a bound constraint. The selection of the variable whose bound
will be splitted follows a rule based on pseudocosts [3]. Pseudocost is a measure associated with
each variable of a problem. It aims to quantify the importance of a variable within a problem
and to predict the deterioration in the optimal value of the problem when the range of variation
of the variable is reduced.

Consider that a node N is selected to be solved. The first step is to solve its relaxed
subproblem. Let x̂N be the solution of the relaxed subproblem. If by S1–S3 the node can be
fathomed, we are done. Otherwise, we have that Î = {i ∈ I | x̂Ni /∈ Z} 6= ∅. Let us assume
that, by a rule that will be detailed below, xi with i ∈ Î is selected to have its bound splitted
in the branching process. In the two new nodes ND and NU , the subproblem bound constraint
`i ≤ xi ≤ ui is replaced by `i ≤ xi ≤ bx̂Ni c and dx̂Ni e ≤ xi ≤ ui, respectively. Let now x̂ND and
x̂NU be the solutions of the relaxed subproblems associated with nodes ND and NU , respectively.
In the two subproblems ND and NU , variable xi had its range reduced with respect to its range
in subproblem N . There are many ways of computing pseudocosts for xi. In the present work,
following the suggestion given in [16], local “down” and “up” pseudocosts for xi are computed
as

δD
i =

f(x̂ND)− f(x̂N)
x̂i − bx̂ic

and δU
i =

f(x̂NU)− f(x̂N)
dx̂ie − x̂i

.

For those variables xi with i ∈ I for which at least a local down (up) pseudocost was computed,
their global down (up) pseudocosts ∆D

i (∆U
i) are given by the average of its local down (up)

pseudocosts. Global down (up) pseudocosts of variables whose local down (up) pseudocosts have
not been computed are defined as the average of the global down (up) pseudocosts of the other
variables.

The rule for selecting a variable, whose explanation was delayed in the previous paragraph,
is based on the global pseudocosts (see [3]) and merely says to select a variable xi∗ such that

i∗ = arg max
i∈I
{min{∆D

i ,∆
U
i }}.

In case of tie, we select the variable with the smallest index. The expectation is that new
generated nodes with a large deterioration in their optimal values will be rapidly fathomed.

The incumbent solution is updated considering the solutions of the relaxed subproblems that
satisfy the integrality constraints (i.e., that are also solutions of the corresponding subproblem).
When the solution of a relaxed subproblem does not satisfy the integrality constraints, its
rounded counterpart is considered. Rounding each component to its nearest feasible integer value
is trivial and provides a feasible solution for the subproblem that may improve the incumbent
solution.

In S3 it is stated that a node is fathomed if the optimal value of the relaxed subproblem is
greater than or equal to the value of the incumbent solution. This fathoming rule is correct only
if by optimal value of the relaxed subproblem we mean global optimal value, which can only

6

be easily computed for convex objective functions. This is not the case of the packing problem
being considered. To overcome this inconvenience, we use two combined strategies:

Multistart: By running a local bound-constraints minimization solver from Nmulti ≥ 1 different
initial points and considering the solution to be the best local minimizer so far obtained,
we aim to enhance the probability of finding global solution of relaxed subproblem.

Untightened fathoming: Let fbest be the value of the incumbent solution and let N and x̂N

be a node and the best local solution obtained for its relaxed subproblem, respectively.
By S3, N should be fathomed if f(x̂N) ≥ fbest. We consider an untightened version of
that condition. The untightened condition uses a known lower bound f̂lb on the optimal
value of the relaxed subproblem and a parameter α ∈ [0, 1] that expresses the degree
of confidence on finding the global solution of the relaxed subproblem. The untightened
condition states that node N should be fathomed if

αf(x̂N) + (1− α)f̂lb ≥ fbest. (9)

Using α = 1, nodes are fathomed as if the global solutions of the relaxed subproblems were
being computed. Using α = 0, inequality (9) is reduced to f̂lb ≥ fbest. In this case, a node
is fathomed only if a known lower bound for the node relaxed subproblem guarantees that
the node is useless.

We use Gencan [8], an active-set method for bound constrained local minimization for
solving the branch and bound relaxed subproblems. Gencan adopts the leaving-face crite-
rion presented in [7] that employs the spectral projected gradients defined in [11, 12]. For the
internal-to-the-face minimization, Gencan uses a general algorithm with a line search that
combines backtracking and extrapolation. As we computed first and second derivatives of prob-
lem (7–8), each step of Gencan computes the direction inside the face using the Newton di-
rection and subroutine MA57 from HSL for solving the linear systems. For a description of
basic techniques of continuous optimization and active-set methods see, for example, [18] and
[23] (pp. 326–330). For a publicly available version of Gencan, see the Tango Project web
site http://www.ime.usp.br/∼egbirgin/tango/.

4 Implementation details and numerical experiments

We implemented the branch and bound method described in Section 3 that uses the continuous
bound-constraints minimization solver Gencan for solving the node relaxed subproblem. Codes
are in Fortran 77 and Fortran 90. They were compiled with gfortran (GNU Fortran version 4.2.1)
and the compiler option “-O3” was adopted. All the experiments were run on a 2.4GHz Intel
Core2 Quad Q6600 processor, 4Gb of RAM memory and Linux operating system.

We consider the same set of rectangular items and convex regions considered in [10] and [9].
For the sake of completeness1, Table 1 shows the description of each problem (inequalities that
describe the convex region Ω, dimensions of the rectangular items, and areas of the convex
regions and the rectangles).

1There are a few typographical errors in the definition of g1(·) for problems 12–16 in [10] and [9].

7

There is a trade-off between computational cost and losing the optimal solution by wrongly
fathoming a node in the selection of the untightened S3 threshold parameter α ∈ [0, 1]. Moreover,
the probability of finding the global solution of a relaxed subproblem is enhanced by solving
each relaxed subproblem starting from Nmulti ≥ 1 different initial points. Preliminary numerical
experiments varying α ∈ {1, 10−1, 10−2, . . .} and Nmulti ∈ {5, 100} showed that combination
α = 10−4 and Nmulti = 5 allows the method to find solutions at least as good as the ones
reported in [10]. The untightened version of fathoming rule S3 requires a lower bound f̂lb for
the optimal value of the node relaxed subproblems. We use f̂lb = 0. It is easy to see that
the objective function (8) of the problem at the root node, which coincides with the objective
function of the subproblems and the relaxed subproblems, is greater than or equal to zero as it
is a sum of squares.

The branch and bound scheme also considers a lower bound flb for the optimal value of the
problem at the root node. The whole search process is stopped if the value of the incumbent
solution achieves the given lower bound. As explained in the previous paragraph, zero is the
natural candidate for flb. This lower bound is tight only if a feasible solution for the packing
problem exists. In the numerical experiments, we set flb = 10−8. It means that if a feasible
point x∗ of the problem at the root node such that the objective function (8) evaluated at x∗ is
smaller than or equal to 10−8 is found, the method will be stopped and x∗ will be returned as a
solution of the packing problem given by (7–8). In other words, it means that a packing with N
rectangles was found. Otherwise, if the method stops with an incumbent solution whose value
is larger than 10−8, it will be said that a packing with N rectangles was not found.

The whole process starts by trying to solve problem (7–8) with N = 1. If a solution of the
packing problem is found, we set N ← N + 1 and we try again. The process stops when a
packing with N rectangles cannot be found, and the solution found for the packing problem
with N∗ = N −1 is considered as the solution of packing as many rectangles as possible. In [10],
an explanation empirically confirmed with numerical experiments justifies the use of this kind
of sequential process of increasing N one by one instead of other strategies such as bisection.
Roughly speaking, packing a few less rectangles than the maximum capacity of the object is a
very easy task, while packing the optimal quantity or trying to pack more than the maximum
object load are very time-consuming problems. In the “easy cases”, the branch and bound is
rapidly terminated by achieving the known zero-valued lower bound on the optimal value, while
in the “hard cases” the branch and bound search tree is fully explored. As in [10], the whole
process of increasing N can be stopped if a known upper bound for its value is achieved, but
this is never the case for arbitrary convex regions, where upper bounds based on a quotients
of areas are never tight. The process can also be started from a lower bound for N different
from 1 as suggested at the beginning of this paragraph. As explained above, however, the first
problems (with small values for N) are simple and solving them or not makes no difference.

Table 2 shows, for each problem, the number of rectangles that were packed in [9] allowing
arbitrary rotations, the number of rectangles that were packed in [10] allowing only ninety-degree
rotations, and the number of rectangles that were packed in this study (allowing ninety-degree
rotations and an extra common angle of rotation for the whole set of rectangles). On the one
hand, the results obtained solving the model introduced in the present approach are expected to
have at least as many packed items as the ones obtained in [10], where no rotations are allowed.
The experiments confirm that expectation: the same number of items was packed in problems

8

1, 3, 7, 10, 11, 12, 13, 14, 15 and 16, while one or two more items were packed for the remaining
problems. On the other hand, the comparison is not as clear with the free-rotations model
introduced in [9]. While the present model has a smaller feasible set, it seems to be easier to
find global solutions for larger values of N . We found solutions with the same number of items
in problems 1, 2, 4, 6, 9 and 14 (even imposing the orthogonality constraint between the items),
solutions with one or two less items in problems 5, 7, 12, 13, 15 and 16, and solutions with up to
three more items in problems 3, 8 and 10. Figure 2 illustrates the solutions. Figure 3 compares
the solutions found for problem 8 in [10], in [9] and in the present approach.

(1) (2) (3) (4)

(5) (6) (7) (8)

(9) (10) (11) (12)

(13) (14) (15) (16)

Figure 2: Graphical representation of the solutions.

A few words about the accuracy of the obtained solutions are in order. We considered
solutions points such that the value of the objective function (8) is not greater than 10−8. The
objective function consists of the sum of two terms: one that penalizes the violation of the object
constraints and other that penalizes the overlapping between the items. The independent values
of those terms at the reported solutions are showed in Table 3. Irrespective of that, another

9

(a) 32 items (b) 33 items (c) 32 items

Figure 3: Graphical representation of the solutions found for a problem with the convex regions
and the item dimensions of problem 8. In (a), the orthogonality constraint between the items is
imposed and only ninety-degree rotations are allowed. It corresponds to the problem introduced
in [10]. In (b), the orthogonality constraint is maintained and a common angle of rotation for all
the items is added. It corresponds to the problem been tackled in the present work. Finally, (c)
corresponds to the free-rotations model introduced in [9] based on the Sentinels concept. With
the present approach, we were able to find a solution with one more item when compared to
the other two approaches. Although it is hard to see from the picture, there is a small common
angle of rotation of θ ≈ 1.60 degree for the items in (b).

measure of overlapping between the items is being computed. Clearly, the intersection between
a pair of orthogonal rectangles is null or gives a rectangle. We will call this rectangle an
“intersection rectangle”. We computed the area of the intersection rectangles between every
pair of rectangular items. The last column of Table 3 displays the area of the intersection
rectangle with the largest area.

Finally, Table 4 shows some measures of the computational effort made by the branch and
bound strategy to find the reported solutions. The last column shows the accumulated CPU
time used by the method to solve problem (7–8) for increasing values of N starting from N = 1
and up to N = N∗. The other two columns show the number of explored nodes in the branch
and bound tree and the corresponding CPU time, both related to the problem with N = N∗.
Subtracting the time spent in the last problem from the accumulated CPU time, it is easy to
see that, for the hardest instances 1, 3, 4, 5 and 11, solving problems with less than N∗ items
is very cheap. In general, to find a “near-to-the-best” packing is an easy task. This observation
justifies, as already observed in [9, 10], the sequential strategy adopted to determine N∗ instead
of any other strategy based on bisection.

Last but not least, the present approach, as are the ones introduced in [9, 10], is suitable for
packing rectangles within general convex regions. When the convex region takes the particular
form of a rectangle, we are faced with the well known pallet loading problem [6, 14, 20, 30],
for which dedicated solution methods exist. Numerical experiments presented in [9] show that
nonlinear-based methods, such as the one presented here, are not competitive with clever meth-
ods developed for this particular case.

10

5 Conclusions and future work

The problem of orthogonally packing identical rectangles within isotropic convex regions was
modeled as mixed integer continuous feasibility and optimization problems. A straightforward
extension of a well established continuous bound-constrained minimization solver was developed
to solve mixed integer nonlinear bound-constrained optimization problems. Its application to
the packing problem models showed that the method is reliable. As a side result, the introduced
models, together with the ones presented in [10] and [9], constitute a nice set of test problems
for global mixed integer continuous solvers. As future work, two different topics deserve further
investigation. First, strategies for eliminating the undesirable symmetry property [19] of the
introduced packing models may be studied and incorporated into them. Second, the extension
of Gencan for mixed integer bound-constrained problems can be incorporated in an augmented
Lagrangian framework, like the one implemented in Algencan [1, 2], to solve mixed integer
(general-constrained) nonlinear programming problems, obtaining a MINLP solver based on
augmented Lagrangians.

Acknowledgements. The authors are also indebted to the anonymous referees whose com-
ments helped to improve this paper.

11

Problem
Convex Region Rectangular item

Description Area a× b Area

1

g1(x1, x2) = −x1

g2(x1, x2) = −x2

g3(x1, x2) = −x1 − x2 + 3
g4(x1, x2) = x2

1 + x2
2 − 100

74.1 2× 1 2

2
g1(x1, x2) = −7x1 + 6x2 − 24
g2(x1, x2) = 7x1 + 6x2 − 108
g3(x1, x2) = (x1 − 6)2 + (x2 − 8)2 − 9

21.7 1.1× 0.55 0.61

3

g1(x1, x2) = −x1

g2(x1, x2) = x1 − 8
g3(x1, x2) = (x1 − 6)2 + x2

2 − 81
g4(x1, x2) = (x1 − 1.7)2 + (x2 − 10)2 − 81

54.4 2× 0.6 1.2

4
g1(x1, x2) = x2

1 − x2

g2(x1, x2) = x2
1/4 + x2 − 5

13.3 1× 0.4 0.40

5
g1(x1, x2) = x2

1 − x2

g2(x1, x2) = −x1 + x2
2 − 6x2 + 6

g3(x1, x2) = x1 + x2 − 6
10.9 0.9× 0.3 0.27

6
g1(x1, x2) = −x1 + x2

2 − 6x2 + 6
g2(x1, x2) = x1 + x2

2 − 3x2 − 3/4
10.2 0.9× 0.3 0.27

7 g1(x1, x2) = (x1 − 2)2/4 + (x2 − 4)2/16− 1 25.1 2× 0.5 1

8

g1(x1, x2) = (x1 − 6)2/4 + (x2 − 6)2/36− 1
g2(x1, x2) = (x1 − 6)2/36 + (x2 − 6)2/4− 1
g3(x1, x2) = x1 − x2 − 3
g4(x1, x2) = −x1 + x2 − 2

13.2 0.7× 0.5 0.35

9

g1(x1, x2) = (x1 − 3)2/4 + (x2 − 4)2/16− 1
g2(x1, x2) = (x1 − 2.65)2/4 + (x2 − 4)2/16− 1
g3(x1, x2) = −x1 + 1
g4(x1, x2) = x1 − x2 − 1
g5(x1, x2) = x1 + x2 − 9

13.7 0.8× 0.6 0.48

10
g1(x1, x2) = (x1 − 6)2/36 + (x2 − 6)2/4− 1
g2(x1, x2) = (x1 − 6)2/9 + (x2 − 8)2/9− 1

13.6 0.95× 0.35 0.33

11
g1(x1, x2) = (x1/6)4 + (x2/2)4 − 1
g2(x1, x2) = 8x1 − 11x2 − 26

34.7 1.9× 0.5 0.95

12
g1(x1, x2) =

√
3x1 + x2 −

√
3(4 + 8/

√
3)

g2(x1, x2) = −
√

3x1 + x2

g3(x1, x2) = −x2

32.2 1× 1 1

13
g1(x1, x2) =

√
3x1 + x2 −

√
3(3 + 10/

√
3)

g2(x1, x2) = −
√

3x1 + x2

g3(x1, x2) = −x2

33.3 1× 1 1

14
g1(x1, x2) =

√
3x1 + x2 −

√
3(8 + 2/

√
3)

g2(x1, x2) = −
√

3x1 + x2

g3(x1, x2) = −x2

36.3 1× 1 1

15
g1(x1, x2) =

√
3x1 + x2 −

√
3(9.302)

g2(x1, x2) = −
√

3x1 + x2

g3(x1, x2) = −x2

37.5 1× 1 1

16
g1(x1, x2) =

√
3x1 + x2 −

√
3(7 + 4/

√
3)

g2(x1, x2) = −
√

3x1 + x2

g3(x1, x2) = −x2

37.5 1× 1 1

Table 1: Definition of the problems.

12

Problem
Number of packed items

Orthogonal items
Free rotations [9]

Only ninety-degree rotations [10]
ninety-degree rotations

plus a common rotation angle

1 32 32 32
2 28 30 30
3 40 40 37
4 26 28 28
5 33 34 35
6 30 32 32
7 19 19 20
8 32 33 32
9 22 24 24

10 34 34 32
11 31 31 –
12 25 25 27
13 26 26 28
14 29 29 29
15 29 29 30
16 30 30 31

Table 2: Number of packed items. When compared to the number of packed items in [10],
where only orthogonal rotations are allowed, it can be seen that the extra common angle of
rotation allows more items to be packed within the same object. Comparing these results with
the number of packed items in [9], where no orthogonality constraint is imposed and each item
has its own angle of rotation, it can be seen that, even with additional positioning constraints,
the simplicity of the present model allows one to find better quality solutions in some cases.

Problem
Objective function value at the solution

Maximum overlapping area
Constraints violation term Overlapping violation term

1 5.2E−13 2.4E−16 1.44432E−07
2 2.1E−11 1.1E−15 1.88327E−06
3 1.3E−13 1.1E−14 4.60587E−08
4 8.3E−14 2.0E−15 1.98382E−07
5 3.6E−10 6.2E−11 1.43665E−05
6 5.3E−17 1.2E−18 7.20967E−09
7 0.0E+00 1.4E−23 0.00000E+00
8 6.3E−14 6.4E−18 1.80352E−07
9 1.5E−17 0.0E+00 1.89104E−09
10 5.4E−17 5.5E−18 3.88860E−09
11 1.1E−12 2.1E−12 1.89224E−07
12 0.0E+00 8.0E−19 0.00000E+00
13 8.9E−19 1.1E−18 2.50940E−10
14 2.2E−17 0.0E+00 1.21657E−09
15 0.0E+00 5.0E−23 0.00000E+00
16 1.5E−23 0.0E+00 1.21323E−12

Table 3: Accuracy of the solutions.

13

Problem
Computational cost

Last problem (with N∗ items) Increasing values of N from 1 to N∗

nodes CPU time (secs) CPU time (secs)

1 39816 10350.08 10574.47
2 7 11.57 94.78
3 1482841 620836.38 622073.00
4 3090896 304453.28 304674.76
5 11128 4717.57 4953.22
6 2121 906.31 1056.20
7 46 3.35 6.21
8 11306 1462.63 1754.43
9 341 23.34 47.45
10 641 114.30 276.47
11 251245 64088.21 64298.39
12 6 0.35 1.60
13 2 0.18 1.27
14 1 0.33 1.78
15 5 3.09 4.34
16 3 1.58 2.89

Table 4: Computational cost of the branch and bound strategy. Note that solving the packing
problem with N∗ items is very expensive compared to solving all the other problems with less
than N∗ items.

14

References

[1] R. Andreani, E. G. Birgin, J. M. Mart́ınez, and M. L. Schuverdt. On Augmented Lagrangian
methods with general lower-level constraints. SIAM Journal on Optimization, 18:1286–1309,
2007.

[2] R. Andreani, E. G. Birgin, J. M. Mart́ınez, and M. L. Schuverdt. Augmented Lagrangian
methods under the Constant Positive Linear Dependence constraint qualification. Mathe-
matical Programming, 111:5–32, 2008.

[3] M. Benichou, J. M. Gauthier, P. Girodet, G. Hentges, G. Ribiere, and O. Vincent. Exper-
iments in mixed-integer linear programming. Mathematical Programming, 1:76–94, 1971.

[4] E. G. Birgin, C. A. Floudas, and J. M. Mart́ınez. Global minimization using an Augmented
Lagrangian method with variable lower-level constraints. Mathematical Programming, 2009.
to appear (DOI: 10.1007/s10107-009-0264-y).

[5] E. G. Birgin and J. M. Gentil. New and improved results for packing identical unitary
radius circles within triangles, rectangles and strips. Computers & Operations Research,
37:1318–1327, 2010.

[6] E. G. Birgin, R. D. Lobato, and R. Morabito. An effective recursive partitioning approach
for the packing of identical rectangles in a rectangle. Journal of the Operational Research
Society, 61:306–320, 2010.

[7] E. G. Birgin and J. M. Mart́ınez. A box-constrained optimization algorithm with negative
curvature directions and spectral projected gradients. Computing [Suppl], 15:49–60, 2001.

[8] E. G. Birgin and J. M. Mart́ınez. Large-scale active-set box-constrained optimization
method with spectral projected gradients. Computational Optimization and Applications,
23:101–125, 2002.

[9] E. G. Birgin, J. M. Mart́ınez, W. F. Mascarenhas, and D. P. Ronconi. Method of sentinels
for packing items within arbitrary convex regions. Journal of the Operational Research
Society, 57:735–746, 2006.

[10] E. G. Birgin, J. M. Mart́ınez, F. H. Nishihara, and D. P. Ronconi. Orthogonal packing of
rectangular items within arbitrary convex regions by nonlinear optimization. Computers &
Operations Research, 33:3535–3548, 2006.

[11] E. G. Birgin, J. M. Mart́ınez, and M. Raydan. Nonmonotone spectral projected gradient
methods on convex sets. SIAM Journal on Optimization, 10:1196–1211, 2000.

[12] E. G. Birgin, J. M. Mart́ınez, and M. Raydan. Algorithm 813: SPG – software for convex-
constrained optimization. ACM Transactions on Mathematical Software, 27:340–349, 2001.

[13] E. G. Birgin, J. M. Mart́ınez, and D. P. Ronconi. Optimizing the packing of cylinders into
a rectangular container: A nonlinear approach. European Journal of Operational Research,
160:19–33, 2005.

15

[14] E. G. Birgin, R. Morabito, and F. H. Nishihara. A note on an l-approach for solving
the manufacturer’s pallet loading problem. Journal of the Operational Research Society,
56:1448–1451, 2005.

[15] E. G. Birgin and F. N. C. Sobral. Minimizing the object dimensions in circle and sphere
packing problems. Computers & Operations Research, 35:2357–2375, 2008.

[16] J. Eckstein. Parallel Branch-and-Bound Algorithms for General Mixed Integer Program-
ming on the CM-5. SIAM Journal on Optimization, 4:794–814, 1994.

[17] C. A. Floudas. Deterministic global optimization: theory, methods and application. Kluwer
Academic Publishers, DorDrecht, Boston, London, 1999.

[18] J. E. Dennis Jr. and R. B. Schnabel. Numerical Methods for Unconstrained Optimization
and Nonlinear Equations. Prentice-Hall, Englewoods Cliffs, 1983.

[19] L. Liberti. Reformulations in mathematical programming: Definitions and systematics.
RAIRO – Operations Research, 43:55–85, 2009.

[20] L. Lins, S. Lins, and R. Morabito. An L-approach for packing (l, w)-rectangles into rect-
angular and L-shaped pieces. Journal of the Operational Research Society, 54:777–789,
2003.

[21] Jingfa Liu, Shengjun Xue, Zhaoxia Liu, and Danhua Xu. An improved energy landscape
paving algorithm for the problem of packing circles into a larger containing circle. Computers
& Industrial Engineering, 57:1144–1149, 2009.

[22] M. Locatelli and U. Raber. Packing equal circles in a square: a deterministic global opti-
mization approach. Discrete Applied Mathematics, 122:139–166, 2002.

[23] D. G. Luenberger. Linear and Nonlinear Programming. Addison-Wesley, California, Lon-
don, Amsterdam, Ontario, Sydney, 1984.

[24] C. D. Maranas, C. A. Floudas, and P. M. Pardalos. New results in the packing of equal
circles in a square. Discrete Mathematics, 142:287–293, 1995.

[25] J. M. Mart́ınez and L. Mart́ınez. Packing optimization for automated generation of complex
system’s initial configurations for molecular dynamics and docking. Journal of Computa-
tional Chemistry, 24:819–825, 2003.

[26] L. Mart́ınez, R. Andrade, E. G. Birgin, and J. M. Mart́ınez. Packmol: A package for build-
ing initial configurations for molecular dynamics simulations. Journal of Computational
Chemistry, 30:2157–2164, 2009.

[27] W. F. Mascarenhas and E. G. Birgin. Using sentinels to detect intersections of convex and
nonconvex polygons. Computational & Applied Mathematics, 2010. to appear.

[28] N. Mladenović, F. Plastria, and D. Urosevic. Reformulation descent applied to circle packing
problems. Computers & Operations Research, 32:2419–2434, 2005.

16

[29] R. Morabito and M. N. Arenales. Optimizing the cutting of stock plates in a furniture
company. International Journal of Production Research, 38:2725–2742, 2000.

[30] R. Morabito and S. Morales. A simple and effective recursive procedure for the manufac-
turer’s pallet loading problem. Journal of the Operational Research Society, 49:819–828,
1998.

[31] K. J. Nurmela and P. R. Österg̊ard. Packing up to 50 equal circles in a square. Discrete &
Computational Geometry, 18:111–120, 1997.

[32] H. Q. Wang, W. Q. Huang, Q. A. Zhang, and D. M. Xu. An improved algorithm for the
packing of unequal circles within a larger containing circle. European Journal of Operational
Research, 141:440–453, 2002.

[33] G. Wäscher, H. Haußner, and H. Schumann. An improved typology of cutting and packing
problems. European Journal of Operational Research, 183:1109–1130, 2007.

[34] H. H. Yanasse and R. Morabito. Linear models for one-group two-dimensional guillotine
cutting problems. International Journal of Production Research, 44:3471–3491, 2006.

[35] H. H. Yanasse and R. Morabito. A note on linear models for two-group and three-group
two-dimensional guillotine cutting problems. International Journal of Production Research,
46:6189–6206, 2008.

[36] H. H. Yanasse, R. Morabito, and M. N. Arenales. Linear and nonlinear models for staged
two-dimensional guillotine cutting problems. In A. Bortfeldt, J. Homberger, H. Kopfer,
G. Pankratz, and R. Strangmeier, editors, Intelligent Decision Support. Current Challenges
and Approaches. Part 1: Decision Support for Cutting and Packing Problems, pages 69–88.
Gabler-Verlag Springer, Wiesbaden, Germany, 2008.

17

